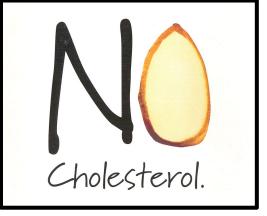


ABC HEART HEALTH JOURNEY

Karen Lapsley, *Almond Board of California* Kathy Musa-Veloso, *Intertek* Claire Berryman, *Florida State University* Wendy Hall, *Kings College London* Becky Jeffers, *Almond Board of California*

ABC HEART HEALTH JOURNEY

Karen Lapsley, Almond Board of California



Almond Heart Health Journey (1995 – 2020)

Moderator:

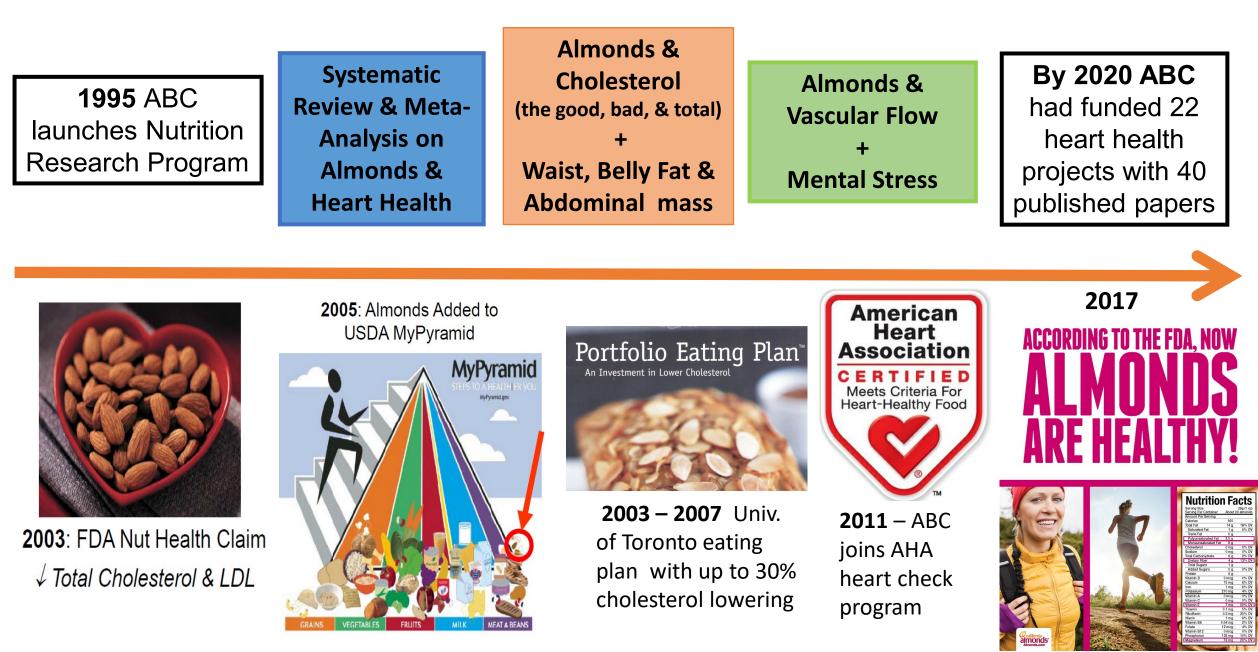
Dr. Karen Lapsley

(retired) Chief Scientific Officer Almond Board of California

Speakers:

Dr. Kathy Musa-Velosa, INTERTEK, Toronto Dr. Claire Berryman, Florida State University Dr. Wendy Hall, King's College London, UK Becky Jeffers, Almond Board of California

CPE Credit for Registered Dietitian Nutritionists (RDNs)



For RDNs who attended this session, you will receive your Certificate acknowledging 1 CPE for your participation no later than Friday, December 11. Your certificate will be sent to the email address that you used to register for this session.

Questions? Email almondboardnutrition@porternovelli.com

1995 – 2020 Key milestones on heart health research and outreach journey

ABC HEART HEALTH JOURNEY

Kathy Musa-Veloso, Intertek

A REVIEW OF THE POOLED LIPID-LOWERING EFFECTS OF ALMONDS

ABC Conference 2020

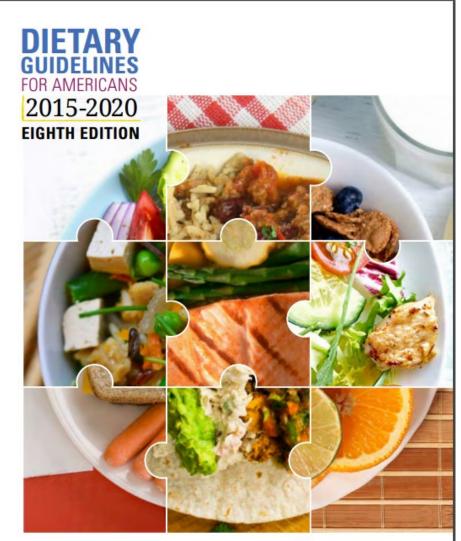
Kathy Musa-Veloso, PhD Health Claims and Clinical Trials Group Food and Nutrition Intertek Health Sciences Inc.

1. Meta-analyses and Nutrition Studies

2. Present Results of Systematic Review and Meta-analyses by Musa-Veloso *et al.* (2016)

3. Summary

META-ANALYSES AND NUTRITION STUDIES


Clinical nutrition studies are challenged in that:

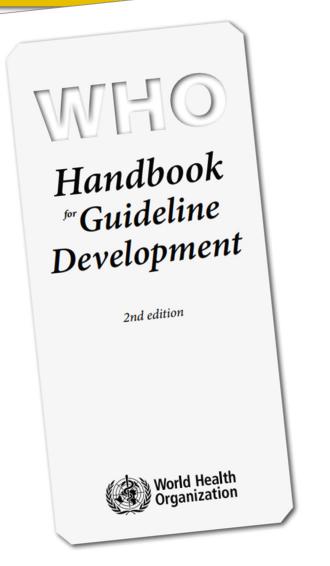
- Effects are generally small and highly variable
 - Compliance is often difficult
- Number of subjects needed to have robust statistical power is large and often not feasible
- ***** A meta-analysis is a way to increase statistical power.
- Meta-analyses are relied upon by the Agency for Healthcare Research and Quality (AHRQ), World Health Organization (WHO), and the Dietary Guidelines Advisory Committee (DGAC) for establishing policies and guidelines.

THE USE OF META-ANALYSES IN POLICY AND GUIDELINES: DIETARY GUIDELINES FOR AMERICANS (DGA)

- The DGAC considered meta-analyses as part of the Stage 1 process ("Review of Current Evidence") in preparing the 2015-2020 Dietary Guidelines for Americans (DHHS/USDA, 2015)
- In the "Scientific Report of the 2020 Dietary Guidelines Advisory Committee", the DGAC recommended that meta-analyses be considered for appropriate questions on a continuous basis (DGAC, 2020)

THE USE OF META-ANALYSES IN POLICY AND GUIDELINES: AGENCY FOR HEALTHCARE RESEARCH AND QUALITY (AHRQ)

Application of Systematic Review Methodology in Nutrition (AHRQ, 2009)


• *"The ability to combine small studies with metaanalysis increases the statistical power available to address specific questions. This is particularly useful for systematic reviews of nutrition topics where the availability of large trials is relatively limited or lacking."*

Technical Review 17	
Nutritional Research Series Volume 1: Application of Systematic Review Methodology to the Field of Nutrition	
Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov	
Contract No. 290-02-0022 Prepared by: Tufts Evidence-based Practice Center, Boston, MA <i>Investigators</i> Alice H. Lichtenstein, D.Sc. Elizabeth A. Yetley, Ph.D.	
Joseph Lau, M.D.	
AHRQ Publication No. 09-0025 January 2009	

THE USE OF META-ANALYSES IN POLICY AND GUIDELINES: WORLD HEALTH ORGANIZATION (WHO)

Handbook for Guideline Development (WHO, 2014)

• "By combining information from all relevant studies, meta-analyses can provide more precise estimates of the effects of an intervention than estimates derived from the individual studies included within a review."

A REVIEW OF THE STUDY CONDUCTED BY MUSA-VELOSO ET AL. (2016)

Objective:

A systematic review and meta-analysis of randomised controlled trials was undertaken to determine the effects of almond consumption on blood lipid levels:

- Total cholesterol (TC);
- LDL-cholesterol (LDL-C);
- HDL-cholesterol (HDL-C);
- Triglycerides (TGs); and
- The ratios of TC:HDL-C and LDL-C:HDL-C.

JNS journal of nutritional science

NS

REVIEW ARTICLE

The effects of almond consumption on fasting blood lipid levels: a systematic review and meta-analysis of randomised controlled trials

Kathy Musa-Veloso*, Lina Paulionis, Theresa Poon and Han Youl Lee Intertek Scientific and Regulatory Concultancy, 2233 Argentia Road, Suite 201, Missiscanga, Ontario, L5N 2X7, Canada

(Reasond 7 February 2016 – Final motion massed 29 April 2016 – Auspiel 9 May 2016)

Journal of Nutritional Saina (2016), vol. 5, e34, page 1 of 15

doi:10.1017/jns.2016.19

Abstract

A systematic review and meta-analysis of randomised controlled trials was undertaken to determine the effects of almond consumption on blood lipid levels, namely total cholesterol (TC), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), TAG and the ratios of TC:HDL-C and LDL-GHDL-C. Following a comprehensive search of the scientific literature, a total of eighteen relevant publications and twenty-seven almond-control datasets were identified. Across the studies, the mean differences in the effect for each blood lipid parameter (i.e. the control-adjusted values) were pooled in a meta-analysis using a random-effects model. It was determined that TC, LDL-C and TAG were significantly reduced by -0.153 mmol/l (P < 0.001), -0.124 mmol/l (P = 0.042), respectively, and that HDL-C was not affected (-0.017 mmol/l); P = 0.207). These results are aligned with data from prospective observational studies and a recent large-scale intervention study in which it was demonstrated that the consumption of nuts reduces and to reduce the risk of heart disease.

Key words: Almonds: Blood lipids: Cholesterol: TAG

Almonds are nutritionally dense⁽⁰⁾. According to compositional data from the United States Department of Agriculture, 100 g of raw, unroasted almonds provides 2423 kJ (579 kcal), 50 g of fat, 13 g of insoluble dietary fibre and 21 g of protein⁽²⁾. There is some natural variability in the composition of almonds in terms of the fat and fatty acid contents; when expressed on a per 100 g basis, almonds contain about 45 to 54 g of fat, with relative amounts of PUFA, MUFA and SFA of 9 to 15, 25 to 36, and 3 to 5 g respectively⁽³⁾. In addition, almonds containsmallamounts meta-analysis of randomised controlled trials, Phung *et al.*⁽⁷⁾ reported that almond consumption was associated with a significant reduction in total cholesterol (TC) (-0·18 mmol/ l; 95 % CI -0·34, -0·02 mmol/l), as well as a strong trend toward a reduction in LDL-cholesterol (LDL-C) (-0·15 mmol/l; 95 % CI -0·29, 0·00 mmol/l). No effects on HDL-cholesterol (HDL-C), TAG, or on the ratio of LDL-C:HDL-C were observed. The meta-analysis by Phung *et al.*⁽⁷⁾ was based on five randomised controlled studies **LITERATURE SEARCH**

Search Date: May 2013, updated literature searches in May 2014 and February 2015

Literature Databases: 8 databases were searched using ProQuest DialogTM

Study Appraisal: Studies were appraised using Health Canada's standardised quality appraisal tool

Results:

• The effects of almonds on blood lipid levels were assessed in 18 publications (27 comparisons)

Inclusion Criteria

- Human intervention study that was randomised and controlled
- The study was a full-length article that was published in a peer-reviewed journal
- The objective of the study was to assess the effects of almond consumption on blood lipid levels
- The amount of almonds consumed was reported
- The subjects were healthy adults (aged \geq 18 y)
- The study duration was ≥4 weeks
- Fasting blood lipids (*i.e.* TC, LDL-C, HDL-C and/or TAG) were assessed; and
- Fasting blood lipids were measured using validated methods.

ALMOND CONSUMPTION AND FASTING TC – META-ANALYSIS RESULTS

Study name	Baseline TC	Almond Intake	Statisti	cs for ea	ch study	,			erencei		
			Difference in means	Lower limit	Upper limit	p-Value		means	and 95%	%Cl	
Spiller et al. stratum 2(24)	Not optimal	100 g	-1.060	-1.883	-0.237	0.012			-		
Abazarfard et al.(9)	Not optimal	50 g	-0.920	-1.277	-0.563	0.000					
Spiller et al. stratum 1(24)	Not optimal	100 g	-0.470	-1.055	0.115	0.115			■─┼		
Wien et al.(28)	Not optimal	60 g	-0.430	-0.742	-0.118	0.007		- I	╉──│		
Tamizifar et al.(25)	Not optimal	25 ğ	-0.410	-0.607	-0.213	0.000		-	╉		
Li et al.(20)	Not optimal	56 g	-0.300	-0.547	-0.053	0.017			-8-		
Jia et al. stratum 1(18)	Optimal	84 g	-0.250	-0.638	0.138	0.206		-	-∎∔		
Sabate et al. stratum 2(23)	Not optimal	68 g	-0.240	-0.567	0.087	0.150		- I -	╶╋┤ ╶╋┥		
Jenkins et al. stratum 2(17)	Not optimal	73 g	-0.230	-0.488	0.028	0.081			-₩		
Jenkins et al. stratum 1(17)	Not optimal	37 g	-0.190	-0.448	0.068	0.150			-∰-		
Ruisinger et al.(22)	Optimal	100 g	-0.190	-0.463	0.083	0.173			-∎+		
Damasceno et al.(15)	Not optimal	50 to 75 g	-0.185	-0.458	0.087	0.182			-∎+		
Jia et al. stratum 2(18)	Optimal	168 g ັ	-0.180	-0.551	0.191	0.342			∎		
Wien et al.(27)	Not optimal	84 g	-0.150	-0.505	0.205	0.408			∎		
Berryman èt al.(11)	Not optimal	43 g	-0.130	-0.252	-0.008	0.036					
Kurlandsky & Stote stratum 2(19)) Optimal	60 g	-0.120	-0.262	0.022	0.097					
Lovejoy et al. stratum 2(21)	Óptimal	57 to 113 g	-0.060	-0.306	0.186	0.633			-#-		
Foster et al.(16)	Optimal	56 g ັ	-0.050	-0.287	0.187	0.680					
Sabate et al. stratum 1(23)	Not optimal	34 g	-0.050	-0.377	0.277	0.764					
Tan & Mattes stratum 3(26)	Optimal	43 g	-0.020	-0.426	0.386	0.923					
Tan & Mattes stratum 4(26)	Optimal	43 g	-0.020	-0.439	0.399	0.925					
Lovejoy et al. stratum 1(21)	Optimal	57 to 113 g	0.000	-0.246	0.246	1.000			-#-		
Kurlandsky & Stote stratum 1(19) Not optimal	60 g ັ	0.020	-0.112	0.152	0.766					
Tan & Mattes stratum 1(26)	Óptimal	43 g	0.150	-0.197	0.497	0.396			_+∎	-	
Tan & Mattes stratum 2(26)	Öptimal	43 g	0.170	-0.289	0.629	0.468			╶┼═╌	-	
Sweazea et al.(10)	Optimal	30.7 to 43 g	0.190	-0.310	0.690	0.456			╶┼═╌	-	
Cohen & Johnston(14)	Optimal	20 g	0.400	0.037	0.763	0.031			∎		
	•	-	-0.153	-0.235	-0.070	0.000			♦		
						-	2.00	-1.00	0.00	1.00	2.00

- 27 comparisons
- Pooled Effect: -0.153 mmol/l
- 95% CI: -0·235, -0·070 mmol/l
- P<0.001

00 -1.00 0.00 1.00 2 Reduced TC Increased TC n

Study name	B <u>aseline LDL-C</u>	Almond Intake	Statisti	<u>cs for e</u>	ach stuc	<u>ty</u>	Differe	ence in	means ar	nd 95%(
			Difference in means	Lower limit		p-Value							
Spiller et al. stratum 2(24) Tamizifar et al.(25) Spiller et al. stratum 1(24) Li et al.(20) Wien et al.(28) Sabate et al. stratum 2(23) Damasceno et al.(15) Jenkins et al. stratum 2(17) Ruisinger et al.(22) Berryman et al.(11) Jenkins et al. stratum 1(17) Wien et al.(27) Foster et al.(16) Lovejoy et al. stratum 2(21) Kurlandsky & Stote stratum 1(19) Sabate et al. stratum 1(23) Kurlandsky & Stote stratum 2(19) Lovejoy et al. stratum 1(21) Tan & Mattes stratum 4(26) Abazarfard et al.(9) Tan & Mattes stratum 3(26) Tan & Mattes stratum 1(26) Sweazea et al.(10) Tan & Mattes stratum 2(26) Cohen & Johnston(14)	Not optimal	$\begin{array}{c} 100 \ g \\ 25 \ g \\ 100 \ g \\ 56 \ g \\ 60 \ g \\ 68 \ g \\ 50-75 \ g \\ 73 \ g \\ 100 \ g \\ 43 \ g \\ 37 \ g \\ 84 \ g \\ 56 \ g \\ 57 \ to \ 113 \ g \\ 60 \ g \\ 57 \ to \ 113 \ g \\ 60 \ g \\ 57 \ to \ 113 \ g \\ 43 \ g \\ 50 \ g \\ 43 \ g \\ 30.7 \ to \ 43 \ g \\ 20 \ g \\ \end{array}$	$\begin{array}{c} -0.854\\ -0.569\\ -0.414\\ -0.400\\ -0.286\\ -0.260\\ -0.247\\ -0.210\\ -0.190\\ -0.190\\ -0.190\\ -0.140\\ -0.120\\ -0.104\\ -0.077\\ -0.070\\ -0.000\\ -0.000\\ -0.000\\ -0.025\\$	-1.610 -0.748 -0.895 -0.663 -0.560 -0.621 -0.419 -0.427 -0.405 -0.236 -0.337 -0.331 -0.263 -0.245 -0.377 -0.363 -0.245 -0.175 -0.366 0.009 -0.307 -0.283 -0.353 -0.283 -0.353 -0.138 -0.138 -0.196	-0.390 0.067 -0.137 -0.012 0.101 -0.076 0.007 0.025 -0.044 0.097 0.123 0.109 0.105 0.321 0.097 0.175 0.376 0.041 0.373	0.027 0.000 0.092 0.003 0.041 0.158 0.005 0.057 0.084 0.278 0.369 0.418 0.369 0.418 0.369 0.418 0.434 0.179 0.828 0.643 1.000 0.979 0.002 0.849 0.753 0.619 0.317 0.179 0.001	-2.00	-1.00			2.00	• • •	26 comp Pooled 1 95% CI: P=0.001

Reduced LDL Increased LDL

- nparisons
- Effect: -0.124 mmol/L
- : -0.196, -0.051 mmol/L
- 1

N

	ТС	LDL-C
Almond dose (g/d)	♦ SS with an ♦ dose of almonds (≥45g)	♦ SS with an ♦ dose of almonds (≥45g)
BL lipid level	♦ SS with ♦ BL lipid level (not optimal)	♦ SS with ♦ BL lipid level (not optimal)

BL = baseline; LDL-C = low-density lipoprotein cholesterol; SS = statistically significant; TC = total cholesterol.

SUMMARY

- Meta-analyses are used to increase statistical power in studies where effect sizes are small and highly variable.
- Meta-analyses are relied upon by the likes of AHRQ, WHO and DGAC for establishing policies and guidelines.
- In the meta-analysis by Musa-Veloso *et al.* (2016), consumption of almonds:
 - ♦ TC and ♦LDL-C fasting levels;
 - Magnitude of reduction was greater with:
 - Adose of almonds and
 - ✤ ▲ BL lipid levels.
- The consumption of almonds, as part of a healthy diet should be encouraged in order to support the management of blood lipid levels and to reduce the risk of heart disease.

THANK YOU

Kathy Musa-Veloso, PhD

Senior Director, Health Claims and Clinical Trials Food and Nutrition Group Intertek Health Sciences Inc.

+1905-542-2900

kathy.musa-veloso@intertek.com

intertek.com/food/consulting

ABC HEART HEALTH JOURNEY

Claire Berryman, *Florida State University*

Beyond cholesterol: emerging almond research in cardiovascular health

Claire Berryman, PhD, RD Department of Nutrition, Food, and Exercise Sciences Florida State University

Disclosure of speaker's interests

(Potential) conflict of interest	See below
Potentially relevant company relationships in connection with event	Almond Board of California
Sponsorship or research funding	Funded past research (2009-2012) related to today's presentation Funded travel expenses to scientific conferences related to this research including Experimental Biology (2010, 2011, 2013, 2014), American Heart Association EPI/NPAM (2013), and IUNS 20th International Congress of Nutrition (2013) meetings Funded past graduate research project (2012-2015) Funding current research project (2020-2022)
Fee or other (financial) payment	None
Shareholder	None
Other relationship	None

Background

- Studies consistently show that almond consumption decreases total and LDL-cholesterol
- Despite being an energy dense food, almonds do not increase body weight, body mass index, or waist circumference
- Prior studies have incrementally decreased some or all foods in the control diet to accommodate the caloric addition of almonds
- The current study used a single, whole food substitution to investigate the <u>independent</u> effects of almonds beyond the contributions of a low-fat background diet

Study objectives

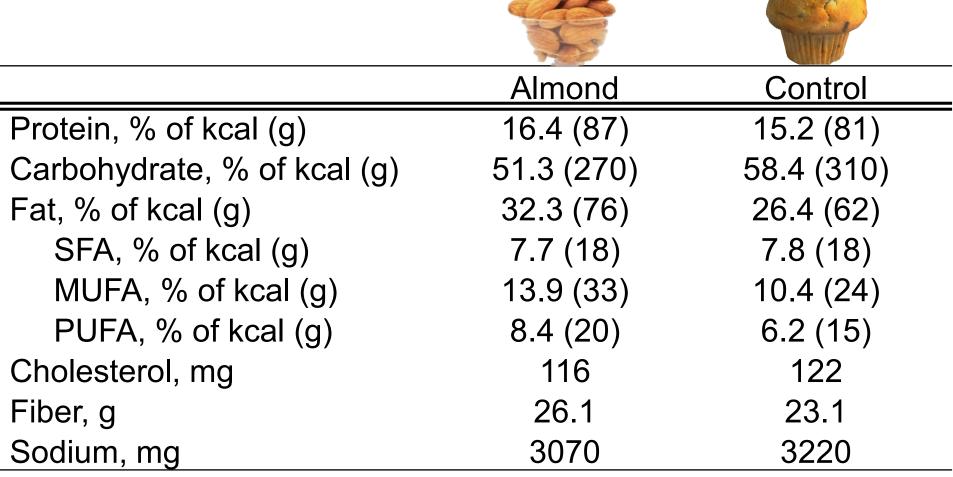
Determine the effects of 43 g (1.5 ounces) of almonds, substituted in a low-fat diet for a calorie-matched muffin, on cardiometabolic health:

- Lipids and lipoproteins
- High density lipoprotein biology and function
- Body composition, including abdominal adiposity

Experimental design

Weeks 1-6 Weeks 9-14 Screening Visit wk break Measures: Step I diet with Step I diet with Height/weight 1.5 oz almonds 1.5 oz almonds **Blood** pressure Blood draw \sim Qualifications: Male or female • Age: 30-65 years • BMI: 20-35 kg/m² 2 wk break **Elevated LDL-C** Step I diet Step I diet Non-smokers without without Not taking cholesterol-lowering almonds almonds medications/ supplements Randomization

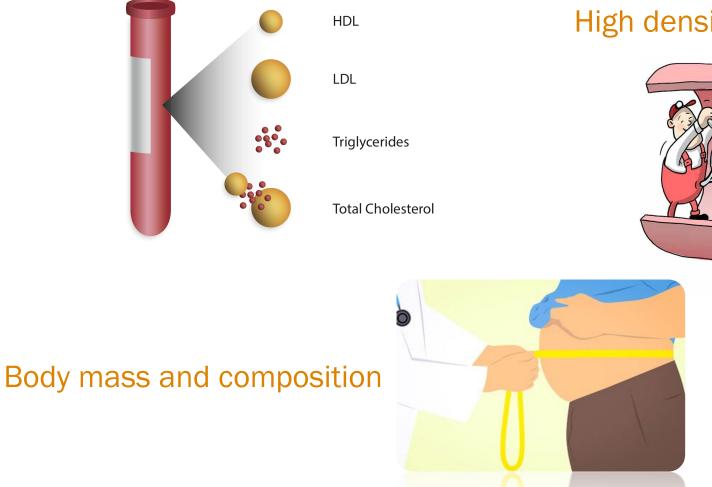
Clinic Visit: Blood draw, blood pressure, body composition assessment



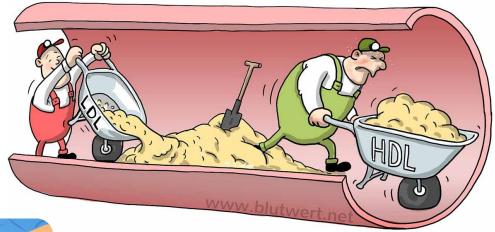
Diet design: sample menu

Breakfast:	Snack:	Lunch:	Dinner:
 2% milk Oatmeal Apple juice English muffin Blueberries Margarine 	43 g almonds OR 106 g banana muffin vs	 White bread Deli turkey Provolone cheese Mayonnaise Pretzels Yogurt Pear 	 Chicken parmesan Broccoli Dinner roll Margarine

Diet design: nutrient composition



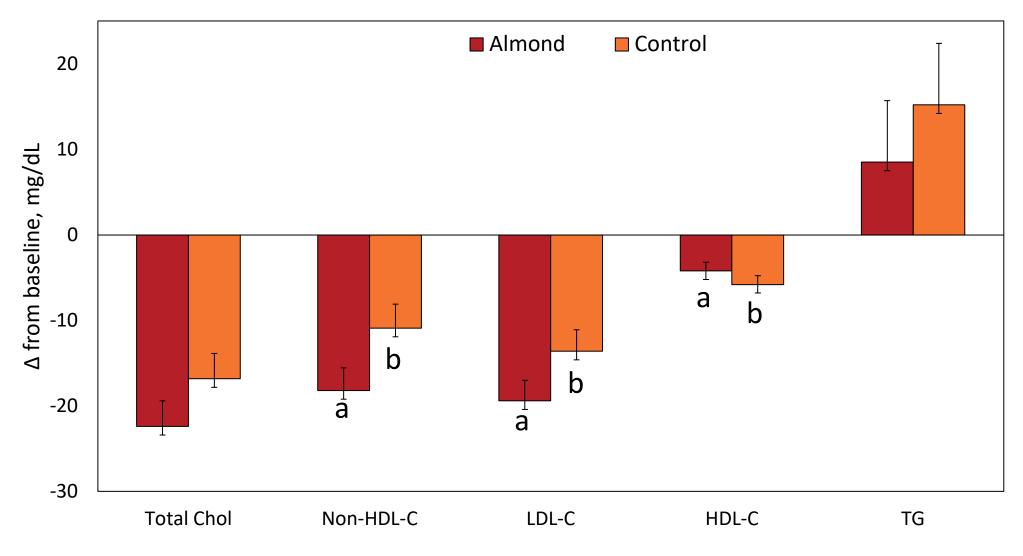
On the basis of 2100 kcal/d and averaged across a 6-d menu cycle. All values were determined using The Food Processor SQL (ESHA Research, Salem, OR). MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids.



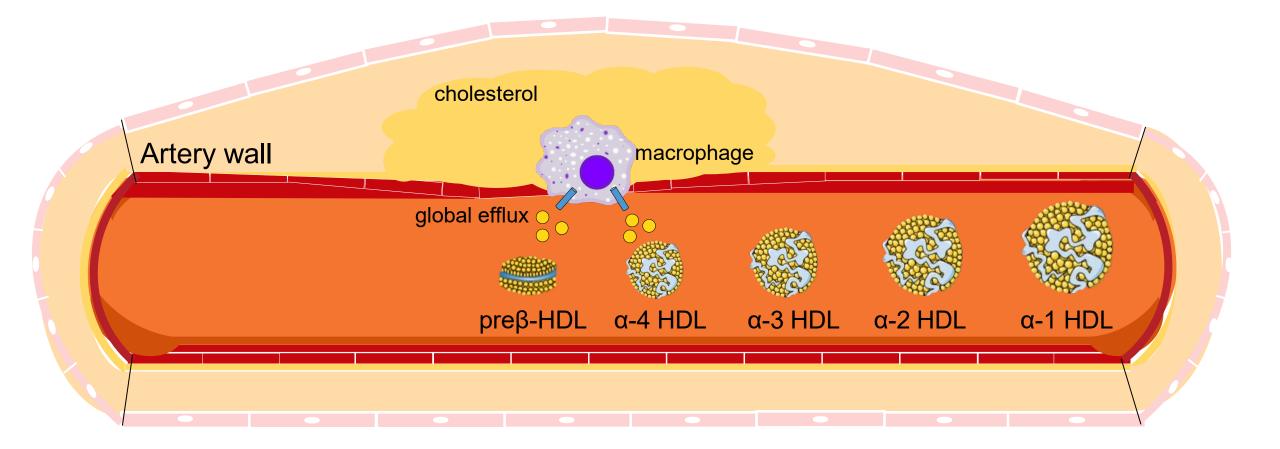
Outcome measures

Traditional lipid and lipoprotein measures

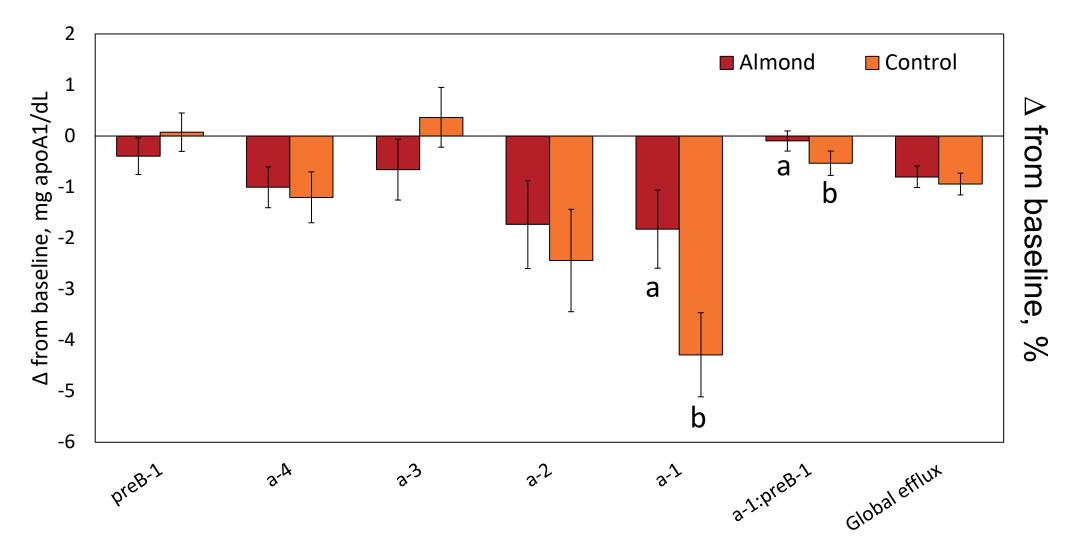
High density lipoprotein biology and function


Baseline characteristics

Variable (n = 48)	
Age, y	49.9 ± 9.4
Race, n (%)	
White	45 (94)
Black	1 (2)
Asian	2 (4)
Hispanic	0 (0)
Body mass index, kg/m ²	26.2 ± 2.8
Blood pressure, mm Hg	
Systolic	116 ± 11
Diastolic	78 ± 7
Lipids/lipoproteins, mg/dL	
Total cholesterol	228 ± 25
LDL-C	149 ± 20
HDL-C	55 ± 16
Triglycerides†	117 (90-143)
Glucose, mg/dL	89 ± 9
C-reactive protein, mg/L+	0.90 (0.50-1.40)
ימותכש מוכי וווכמוד ב שנמותמות תביומנוסוו. וווכעומון, ווונ	erquarme range in parenmeses.

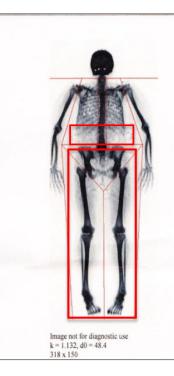

The diet with almonds improved traditional lipid and lipoprotein measures

Mean \pm standard error. Different letters within variables indicate treatment differences, P < 0.02.


High density lipoprotein biology and function

32 Claire E. Berryman, PhD, RD (cberryman@fsu.edu)

The diet with almonds preserved large, mature HDL particles


Mean \pm standard error. Different letters within variables indicate treatment differences, P \leq 0.02.

Body mass and composition

- Waist circumference
- Dual-energy x-ray absorptiometry (DXA)

Scan Information:

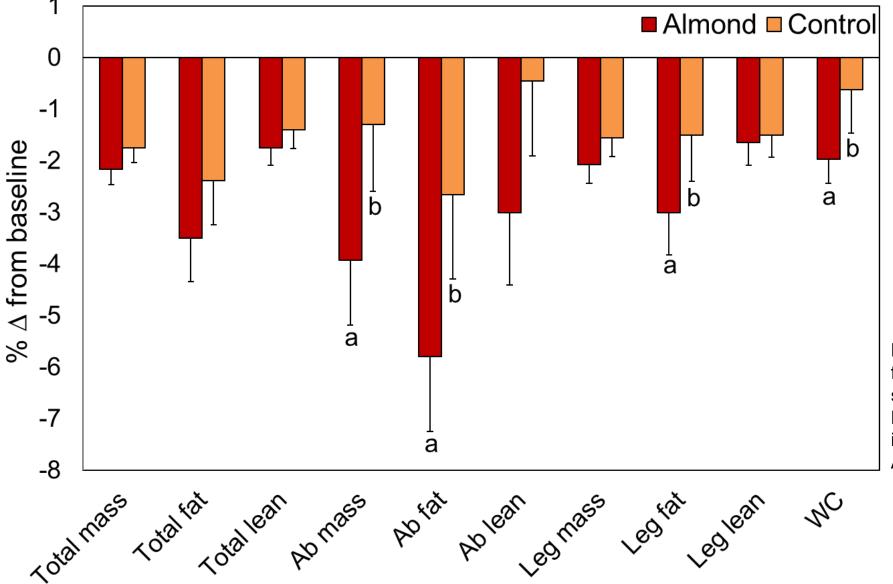
 Scan Date:
 May 05, 2011
 ID: A05051106

 Scan Type:
 a Whole Body

 Analysis:
 May 05, 2011 18:14 Version 13.2:5 Auto Whole Body

 Operator:
 PS

 Model:
 Discovery Wi (S/N 81837)


 Comment:
 Kan State Stat

DXA Results Summary:

243.71 273.25 150.03	224.66 256.60	0.922 0.939		
		0.939		
150.03	126.62			
	126.63	0.844		
169.08	132.50	0.784		
135.65	193.83	1.429		
50.14	79.80	1.591		
232.43	324.85	1.398		
432.61	672.20	1.554		
453.21	707.61	1.561		
	50.14 232.43 432.61	50.14 79.80 232.43 324.85 432.61 672.20	50.14 79.80 1.591 232.43 324.85 1.398 432.61 672.20 1.554	50.14 79.80 1.591 232.43 324.85 1.398 432.61 672.20 1.554

The diet with almonds decreased abdominal fat and leg fat

Percentage change in body composition from baseline. Mean percentage change \pm standard error from baseline (n=48). Different lowercase letters within variables indicate treatment differences, P \leq 0.023. Ab, abdominal; WC, waist circumference.

35 Claire E. Berryman, PhD, RD (cberryman@fsu.edu)

Conclusions

- Almonds (43 g), substituted in a low-fat diet for a calorie-matched muffin, reduce LDL-cholesterol
- Almonds maintain favorable circulating HDLcholesterol and α-1 HDL particle concentrations
- Almond consumption has a beneficial impact on regional body composition, decreasing both abdominal and leg fat

Take home message

Almonds are a practical and healthy snack (~250 kcal/d) that reduce LDL-cholesterol levels and improve emerging cardiovascular risk factors, including abdominal adiposity, when substituted for carbohydrate-rich foods within a low fat diet.

Published work from today's presentation: Berryman CE et al. J Am Heart Assoc. 2015 Jan; 4(1): e000993. Berryman CE et al. J Nutr. 2017 Aug; 147(8): 1517–1523.

Acknowledgements

- Study Participants
- Cardiometabolic Research Lab (PSU)
- Nutritional Physiology Lab (FSU)
- Almond Board of California

ABC HEART HEALTH JOURNEY

Wendy Hall, Kings College London

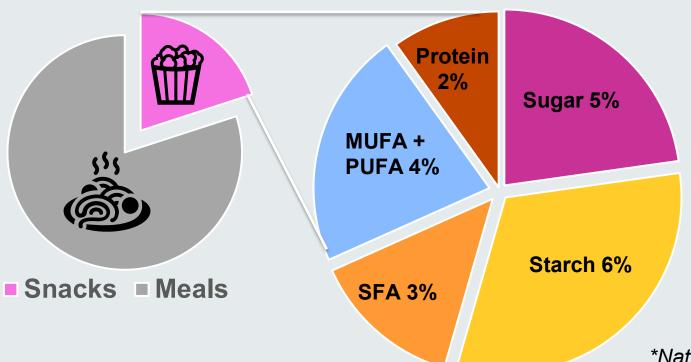
Could snacking on almonds make a difference to heart health? Results of the ATTIS trial

Dr Wendy Hall, Reader in Nutritional Sciences **Principal Investigator on the ATTIS study:** <u>A</u>lmond <u>Trial</u> <u>Targeting dietary</u> <u>Intervention with</u> <u>S</u>nacks

Disclosure of speaker's interests	
(Potential) conflict of interest	See below
Potentially relevant company relationships in connection with event	Almond Board of California
Sponsorship or research funding	Funded the research presented here and scientific conference expenses to present the research at Nutrition 2018 (Boston, USA) and the 37th International Symposium on Diabetes & Nutrition (Kerkrade, Netherlands).
Fee or other (financial) payment Shareholder	None
Other relationship	None

Snacking

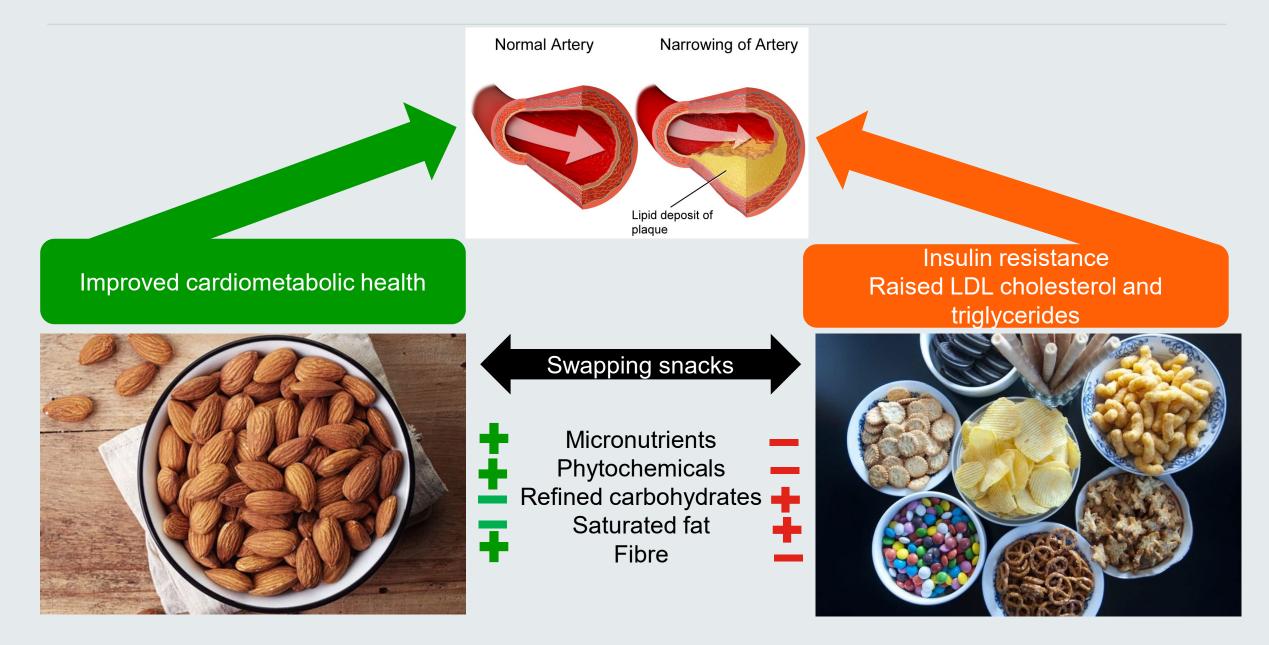
Snacking habits have been linked to risk of obesity


 Diet quality

% snack energy from

macronutrients

Sedentary behaviour


% energy intake in UK from snacks*

*National Diet & Nutrition Survey rolling programme 19-64 y

Rationale for replacing typically consumed snacks with almonds

Research question: does snacking on almonds influence cardiometabolic health?

Study design

Recruitment/

screening

- Randomised, controlled dietary intervention study
- Parallel groups: whole roasted almonds or muffin snacks

Run-in (control

snacks)

2 weeks

 Primary outcomes: vascular (endothelial) function and liver fat

Study population

- Men and women, 30-70 y
- Regularly consume ≥2 snack products per day,
- Moderate risk of developing CVD

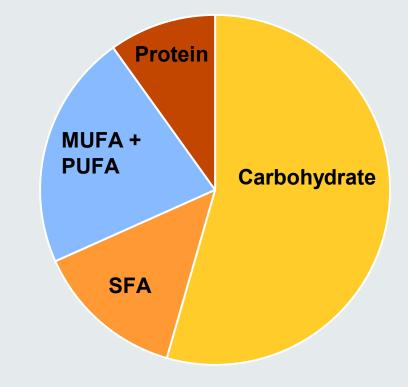
Intervention (randomised to control or almond snacks, 20% of energy requirements)

6 weeks

• ATTIS study duration: July 2016 to May 2019

Clinicaltrials.gov NCT02907684

e.g. 400 kcal for an average woman



Control snacks

The development of control muffin snacks (sweet and savoury)

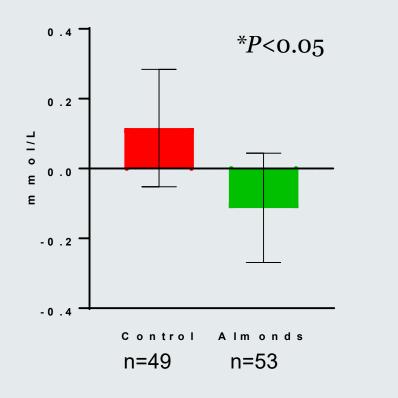
Average macronutrient profile of UK snacks (% energy)

Irish Food Board. Snacking in Ireland and UK. Full Report March 2014. National Diet and Nutrition Survey. (2008/2009 – 2011/12). May 2014. Public Health England.

Baseline characteristics of enrolled participants at screening

Randomised groups were matched for age, sex, ethnicity, BMI and other risk factors.

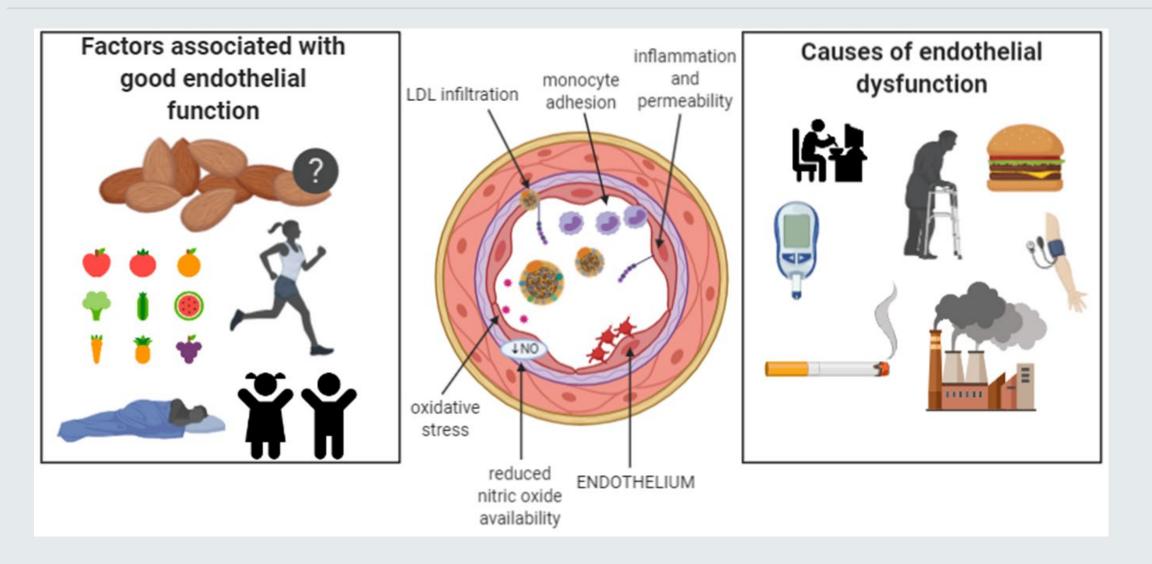
107 randomised 105 completed



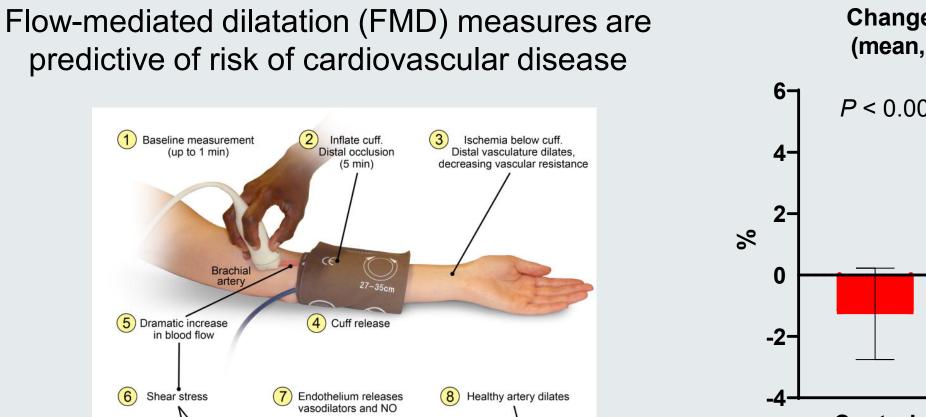
Average age 57 years

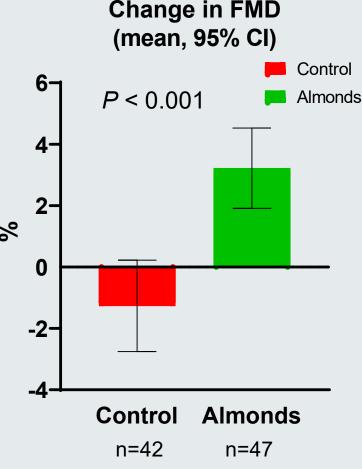
LDL cholesterol lowered by almond snacking

Change in fasting serum LDL-C


(mean, 95% Cl)

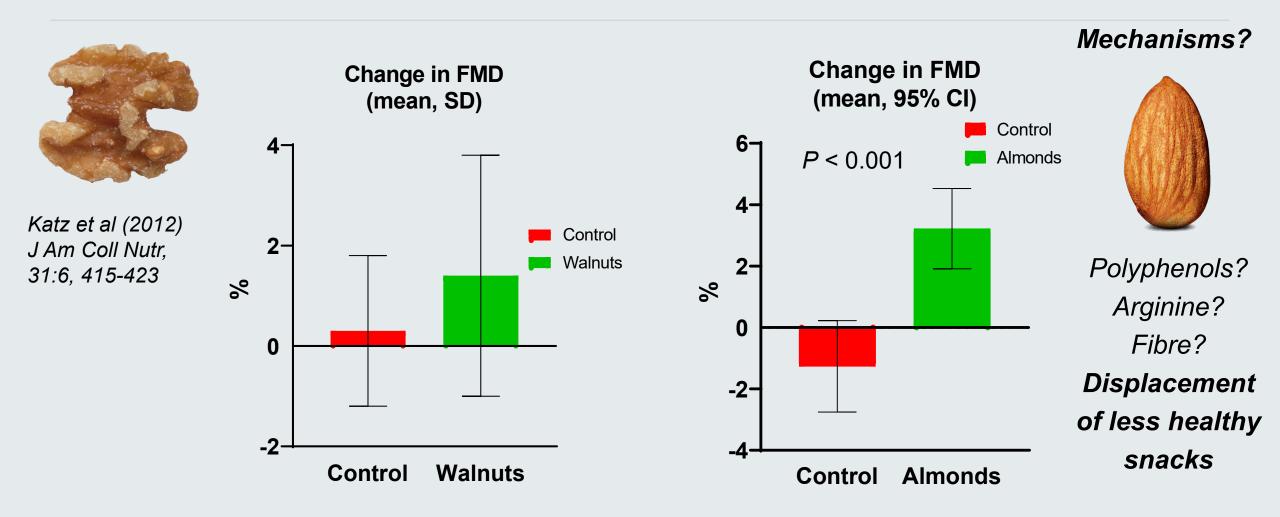
No effect on markers of body composition or glucose regulation:


- Liver fat
- Pancreatic fat
- Body composition
- Insulin
- Glucose
- Total cholesterol
- HDL-C
- Adipokines


Dikariyanto et al 2020 American Journal of Clinical Nutrition, 111(6):1178-1189.

Primary Outcome: Endothelial Function

Endothelial function improved by almond snacking



**Changes from baseline, adjusted for baseline value, sex, age, BMI

Dikariyanto et al 2020 American Journal of Clinical Nutrition, 111(6):1178-1189.

Endothelial function improved by almond snacking

Results agree with previous studies on walnuts

Average intake of almonds is low in the UK

7% of UK adults consume whole almonds UK National Diet and Nutrition Survey 2008-2017, n=6,802

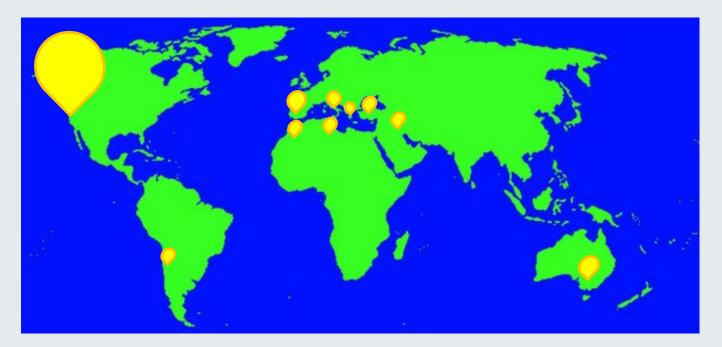
Median intake 5 g/d in almond consumers

* Reported during a 4-day period, not including nuts consumed as a composite part of meal

Dikariyanto et al (2020) European Journal of Nutrition, May 16. doi: 10.1007/s00394-020-02270-9

Conclusions and implications

- Should we be encouraging more snacking on tree nuts such as almonds for better heart health?
- "Nuts are high in fibre, and unsalted nuts make a good snack. But they do still contain high levels of fat, so eat them in moderation." www.NHS.uk/live-well/eat-well -


National Health Service website advice is out of date/misguided.

Conclusions and implications

EAT-Lancet planetary health diet: at least 50 g nuts/day as alternative to red meat

- Can we increase almond intakes?
 - Requirement for crop-land and water would be very large – effect on ecosystems?

Geographical areas of almond production

The ATTIS Trial Research Team

Dr Sarah Berry Dr Wendy Hall Joint Principle Investigators

Leanne Smith Research Assistant and Study Dietitian

Vita Dikariyanto PhD student

Prof Peter Ellis

Advisor on Vascular almond bioaccessibility

Dr Geoff Charles-Edwards Chowienczyk Medical physicist (leading MRI/MRS)

Research team contributors: Anne-Catherine Perz Lucy Francis May Robertson Molly O'Callaghan-Latham Eslem Kusaslan ~20 other BSc/MSc/international intern students

Co-Investigators

Prof Phil

expert

Thank you

Dr Wendy Hall/Dr Sarah Berry for more information

@hall_wendy @saraheeberry
wendy.hall@kcl.ac.uk/sarah.e.berry@kcl.ac.uk
www.kcl.ac.uk/people/wendy-hall

© 2020 King's College London. All rights reserved

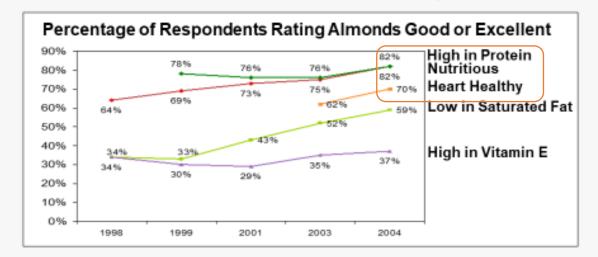
ABC HEART HEALTH JOURNEY

Becky Jeffers, Almond Board of California

Journey of Understanding Heart Health: Research to Recommendations

Becky Jeffers Manager, North America Marketing

PRE-2000's almonds suffered from misperception



By the early 2000's, consumers were acknowledging heart benefits

Executive Summary

Attitudes - Health

70% of consumers believe that almonds are good or excellent for being heart healthy

al other nutritional benefits also continue to in

While almond consumer communications do not overtly express "nutrient density" as a benefit of almonds, survey respondents are ascribing a "nutrient density" halo to almonds. It is unusual for a food to be perceived as having multiple health benefits, as is true for almonds.

From the foundation of heart health research, California Almonds' meaning evolved

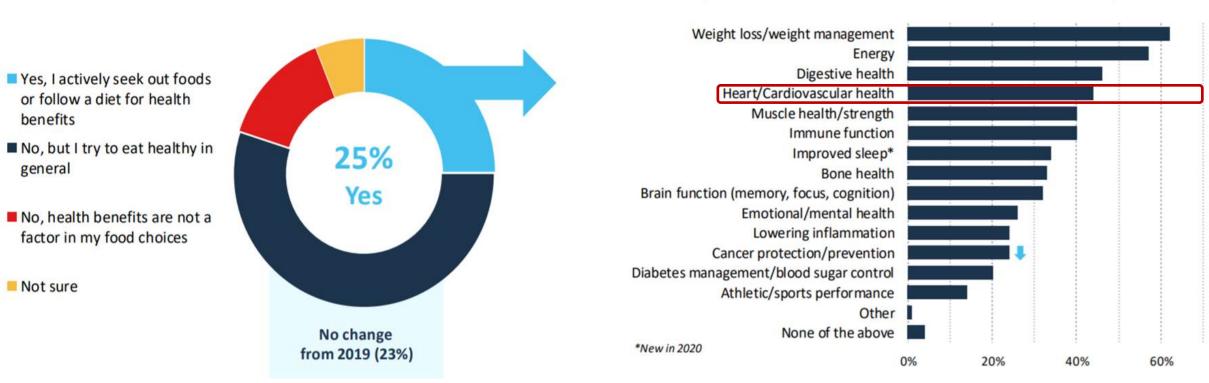
This halo of almonds has allowed category growth

2006:

38% Snack almonds62% Ingredient

2019:

54% Snack almonds19% Almond milk6% Almond butter21% Ingredient



1 in 4 Consumers actively seek foods for health benefits; heart health ranks high

Those in very good health are more likely than their counterparts to actively seek out foods or follow a diet for the health benefits

Seek Health Benefits from Foods?

Top Sought After Health Benefits

(Of those who seek health benefits from foods)

Q32 (TREND): Do you seek out certain foods or follow a particular diet because of the health benefits that those foods/diet provide? (n=1,011)

Q35 (REVISED TREND): Which of the following health benefits are you seeking to get from foods or nutrients? Select all that apply. (Of those who seek health benefits from foods, n=232)

foodinsight.org | 45 2020

What health topics do almonds own in consumers minds?

Exact Same Ranking Seen Internationally As Well:

۲

*

۲

USA

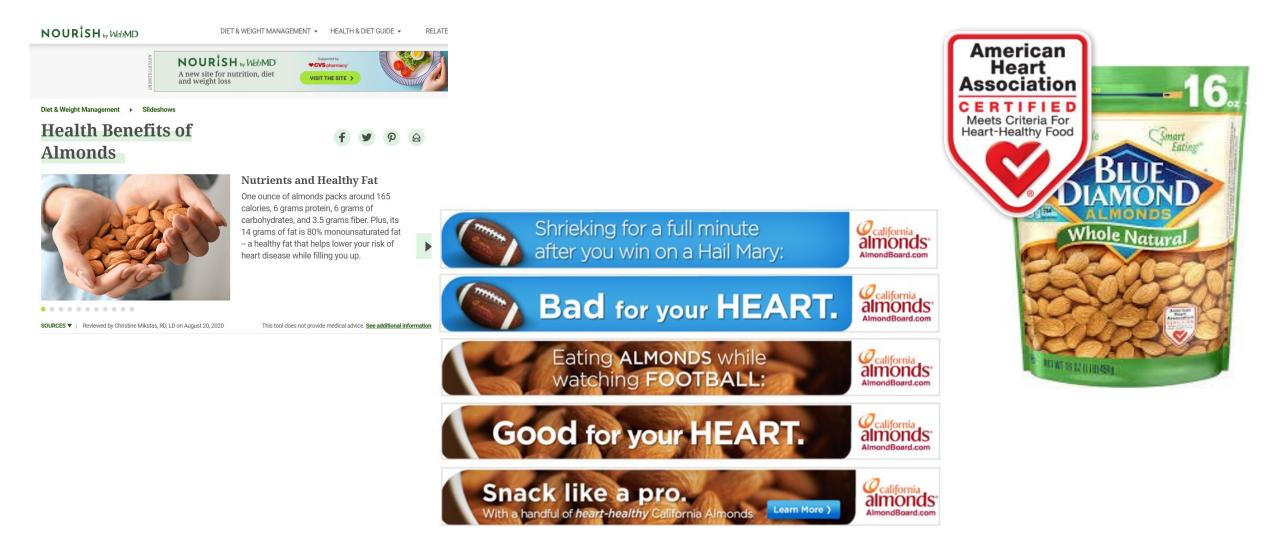
U.S.

Source: Almond Board of California, Global Perception Study 2019, "Best nut for..."

CONSUMER ATTENTION IS SHORT

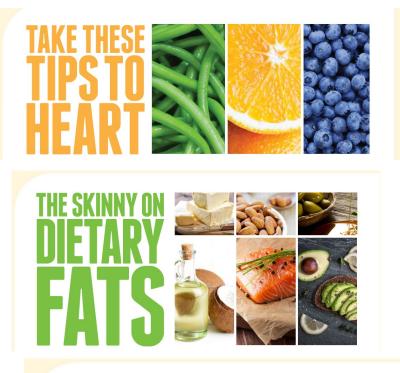
4 KEY ELEMENTS

+ Transparent science


+ Understand how almonds fit in people's lives

+ Be relevant to how people eat

+ Support Healthcare Professionals as experts


Putting It Into Practice

Resources at Almonds.com

Digestible Handouts

NUTRITION BY ADDITION: BUILD A BETTER SNACK

Easy Messaging

Treat your heart right with almonds.

Heart Health

Almonds' heart-smart benefits are meaningful for just about everyone, especially since cardiovascular disease holds the spot as the leading cause of death among men and women in the U.S.

Almonds are cholesterol-free, and have only 1 gram of saturated fat and 13 grams of unsaturated fat per one-ounce serving. According to the U.S. Food and Drug Administration, "Scientific evidence suggests, but does not prove, that eating 1.5 ounces per day of most nuts, such as almonds, as part of a diet low in saturated fat and cholesterol may reduce the risk of heart disease."

The American Heart Association® has certified whole almonds to display the sought-after Heart-Check mark. Now it's easy for everyone out there to identify almonds as a heartsmart option.¹

THANK YOU

