Biomass: Building a California Bioeconomy with Hulls and Shells

December 7, 2016

Biomass: Building a California Bioeconomy with Hulls and Shells

Karen Lapsley, Almond Board of California (Moderator)

Bill Orts, USDA Albany

Dr. Glenda Humiston, UC Davis

Karen Lapsley, Almond Board of California

Bill Orts, USDA Albany

Adding Value to Almond Co-Products

William Orts – Research Leader, Bioproducts

December 7, 2016

Our USDA Research Mission:

Add value to agricultural products to help the rural economy

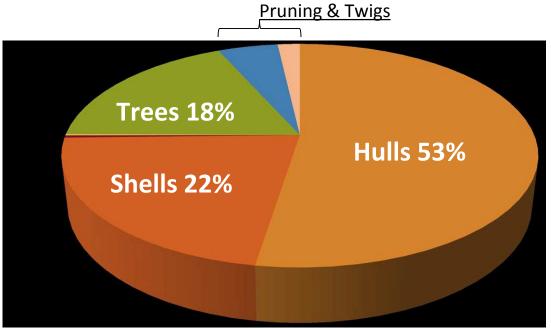
Agricultural Research Service

Albany, California ~450 people ~50 in Biofuels/ & Bioproducts

Known for biotechnology, especially crop biotech.

USDA Western Regional Research Center

Packaged Fruit Slices


Mantrose-Haeuser Co., Inc.

McDonald's sells 65 million lbs/yr of apples in the U.S. USDA continues to collect royalties

Almond Co-Products

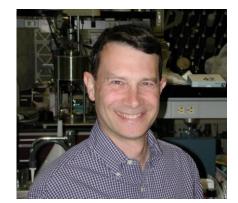
Almond Biomass \Leftrightarrow 2.4 million Tons/yr

SOURCE: Guangwei Huang, CA Almond Board, 2015 data, dry mass basis

Biomass from Shellers/Hullers

	Wet Mass (MT)	Dry Mass (MT)
Hulls	1,416,413	1,235,112
Shells	538,174	520,414
Twigs	66,972	42,192
Totals	2,021,558	1,797,718

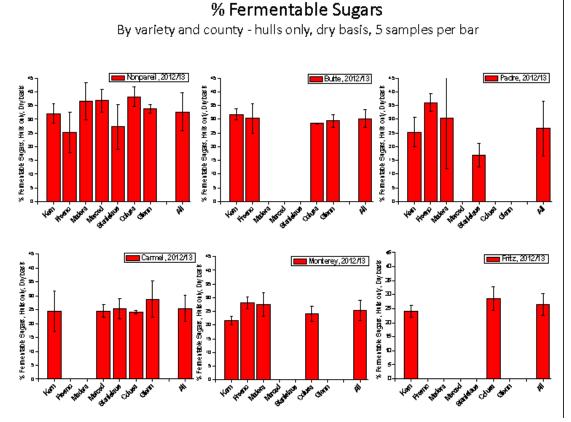
SOURCE: Guangwei Huang, CA Almond Board, 2015 data, dry mass basis


Ethanol Production from Hull Sugars?

Kelly Covello

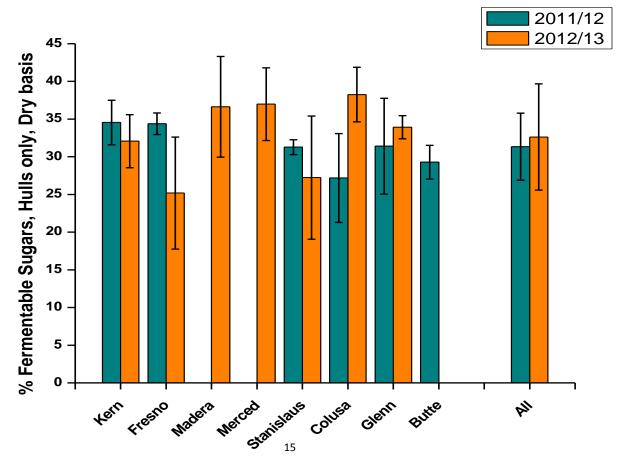
Offeman, R.D., Holtman, K.M., Covello, K.M., Orts, W.J. Almond hulls as a biofuels feedstock: Variations in carbohydrates by variety and location in California. *Industrial Crops & Products* 54: 109-114, 2014.

Rick Offeman

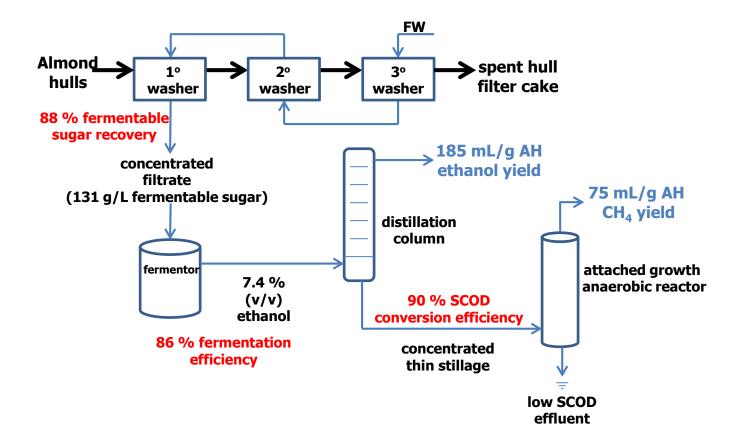


Sugars in Almond Hulls

	% Sucrose	% Glucose	% Fructos	% Fermentable sugars	% Xylose	% Inositol	% Sorbitol	% Total sugars
Non- Pareil	3.84	17.61	15.04	36.49	1.03	2.36	4.37	44.24
Butte/ Padre	0.38	12.87	12.55	25.80	0.77	0.99	2.84	30.40
Cali- fornia	0.14	6.79	3.53	10.46	0.64	1.89	1.76	14.75


Almond Hull Sugars

SOURCE: Offeman, Holtman et al. (2014) Ind. Crops & Prod. 54:109-114


Nonpareil, 2011/12 Season vs. 2012/13 Season

% Fermentable Sugars, Dry Basis (ave 5 samples each county)

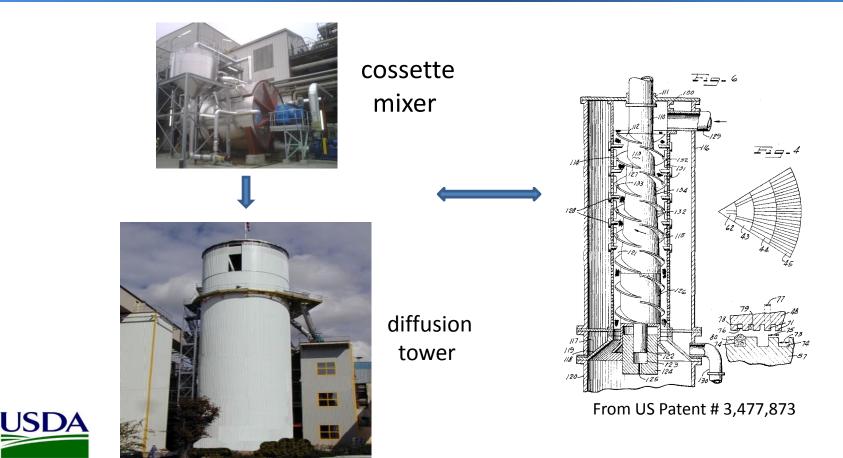
Integrated Ethanol Plant

Ethanol Production from Hull Sugars?

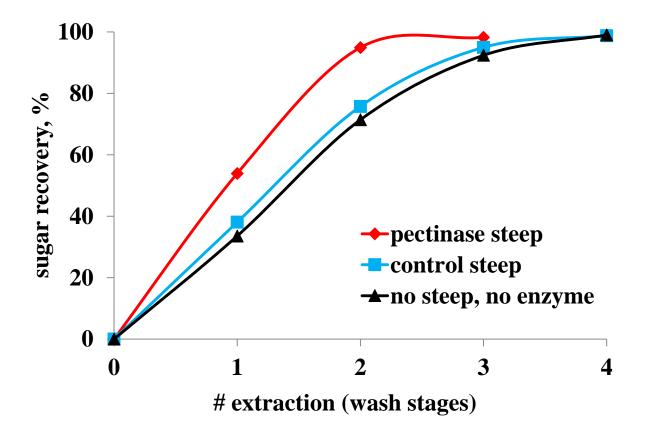
Raw Feed	\$/ton	% sugar	Sugar (lbs)	Ethanol (gal)	\$/gal Ethanol
Corn kernels	132		1286	95	1.38
Sugar beets	39	18.5	370	27	1.42
Molasses (feed)	180	79.5	1590	118	1.52
Sugar cane	39	14	280	21	1.88
Almond hulls	150	31	624	40	3.83

USDA

Almond Hulls vs. Sugar Beet Cossettes



Almond Hulls 30 % fermentable sugar

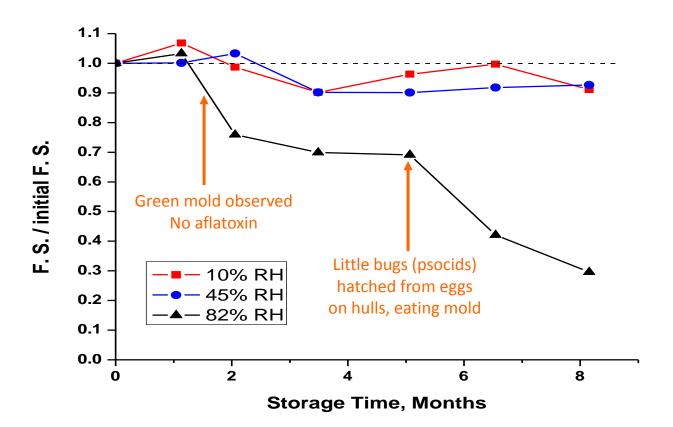

Beet Cossette 15 % fermentable sugar

Sugar Beet Extraction ⇔ Hull Extraction?

Comparison of Extraction Approaches

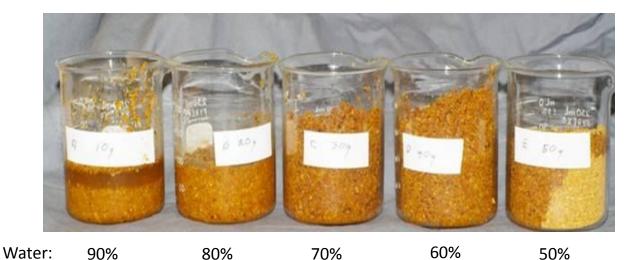
Processing Hulls to Sugars

- ONE IDEA: Make a concentrated sugar syrup
 - Countercurrent extraction with hot water
 - Concentrate syrup with multiple effect evaporators
- ETHANOL?
 - Ship to existing ethanol plant to co-feed with corn
- FOOD OR FEED SYRUP: ????


Comparison of Extraction Approaches

USDA

Nonpareil Lab Storage Tests


Normalized to starting concentrations Each point average of 3 samples (North State, Cortina, Central hulls)

Spent Hulls ⇔ Uses?

Key issue: Not practical to ferment hulls directly

- Hulls absorb 4-8 times weight of water
 - Highest stirrable slurry is ~15% hulls in water.

Possible Outlets for Spent Hulls

Characteristics

- High in cellulose, lignin, hemicellulose; no sugars
- Milled to < 8 mesh, and full of water (~93% moisture!)

Cattle feed

- Feed value of dry spent hulls low (UC Davis analysis)
- As wet spent hulls, no monetary value
- Cost to dry the wet spent hulls too high: ~\$150/ton

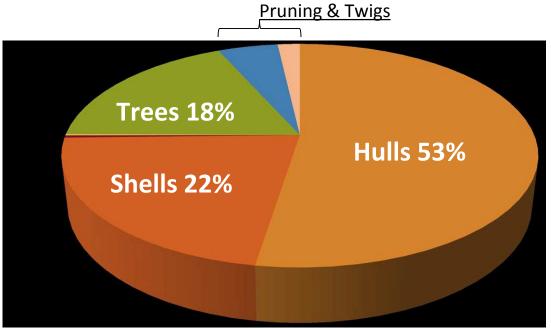
Anaerobic digestion to biogas

- Compressed natural gas (CNG) for local use
- BMP ~150 mL CH₄/T spent hulls
- ~50% methane, balance carbon dioxide. Upgrading needed

Boiler fuel or gasification for heat/power

• Same drying issue

Hydrothermal carbonization????


- Process suited specifically for high moisture wastes
- Produces biochar material

Almond Co-Products

Almond Biomass \Leftrightarrow 2.4 million Tons/yr

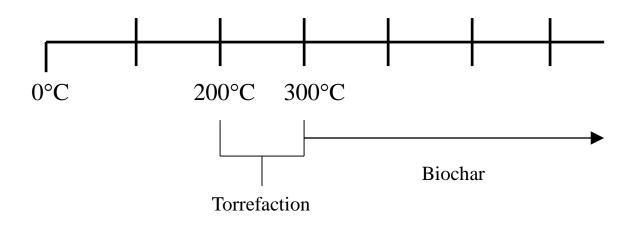
SOURCE: Guangwei Huang, CA Almond Board, 2015 data, dry mass basis

Almond Shell Characterization

Previous work at USDA

Fraction	Average (g/kg)	Std dev.
Ash	34	0.07
Hot water extractives (100°C)	105	0.35
Klason lignin	237	0.53
Glucan	228	0.48
Xylan	329	0.45
Galactan	45	0.04
Others	24	0.05
Mass balance	1002	0.11

*Gong, D.C.; Holtman, K.M.; Franqui-Espiet, D.; Orts, W.J.; Zhao, R. *Biomass and Bioenergy* 35 (10): 4435-4441 (2011).

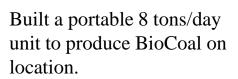


TORREFIED FILLERS FOR PLASTICS

TO STUDY THE EFFECTS OF TORREFIED FILLERS ON THERMAL AND MECHANICAL PROPERTIES OF PP

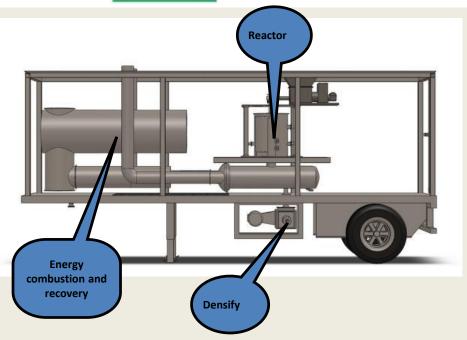
Torrefaction \Leftrightarrow "Burning" in Limited Oxygen

- Torrefaction: 200°C to 300°C under inert atmosphere
- Removes moisture and volatiles \rightarrow stable to microbial attack
- Densify torrefied biomass \rightarrow cheaper to transport



– Energy value ~ low rank coal

Torrefaction: Conversion of Biomass to "Biocoal"


USDA

The 28' unit is mounted on an 18-wheel trailer

Almond hullers processing plant, Los Banos, CA

http://renewablefueltech.wordpress.com/

Torrefied Almond Shells

60 min 80, min 100 min

Making plastic parts with almond shell additives

Torrefied biomass:

Almond shells at 280°C Wood at 280°C Almond shells at 300°C

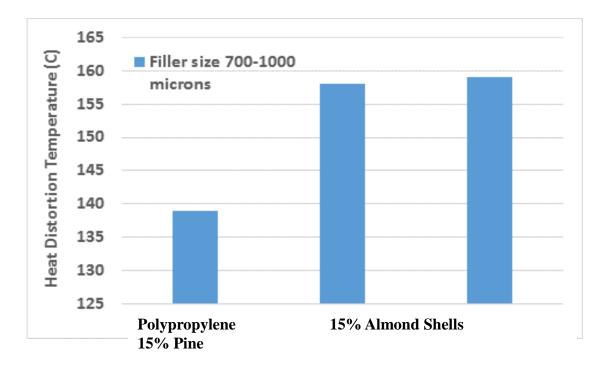
Polymer: Polypropylene

Torrefied Biomass-Polymer Composites

Torrefied Almond Shell

Torrefied Almond Shell in Polypropylene

Torrefied Almond Shell in PET

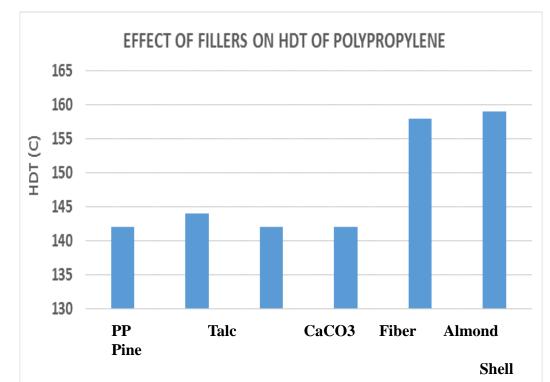


Alternative to wood-polymer composites

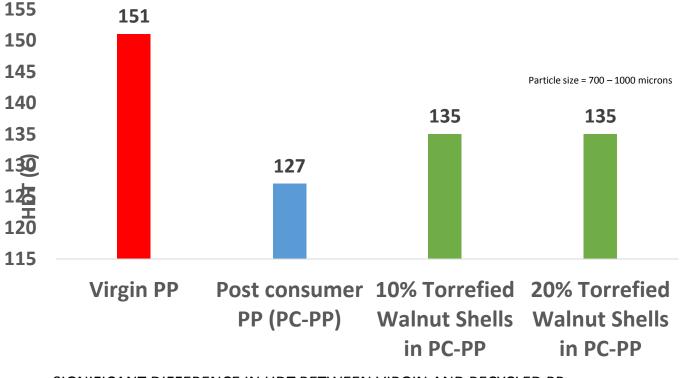
Heat Distortion Temperature

a.k.a. ⇔ the softening point

Temperature at which material deforms under specific load



Heat Distortion Temperature


a.k.a. ⇔ the softening point

Temperature at which material deforms under specific load

EFFECT OF TORREFIED FILLERS ON HEAT DEFLECTION PROPERTIES OF PP

- SIGNIFICANT DIFFERENCE IN HDT BETWEEN VIRGIN AND RECYCLED PP
- ADDITION OF TORREFIED FILLERS IMPROVED THE PROPERTY OF RECYCLED PP

PP grades provided by Kevin Stevenson, FDS MFG

Torrefied Biomass in Plastics

THERMALLY TREATED BIOMASS FOR OTHER APPLICATIONS

TIRE INDUSTRY, FILTERS, SOIL ADDITIVES, BIOENERGY

ELEMENTAL ANALYSIS OF CARBON BLACK & TORREFIED BIOMASSES

			\bigcirc		\frown
SAMPLE	% C	% H	%0	% N	% Si
CARBON BLACK	88.48	0.91	4.74	0.19	<0.05
TORREFIED WALNUT SHELLS	62.51	5.68	28.84	0.49	1.06
TORREFIED RICE HULL	40.70	4.22	26.14	0.45	10.77
			\smile		\smile

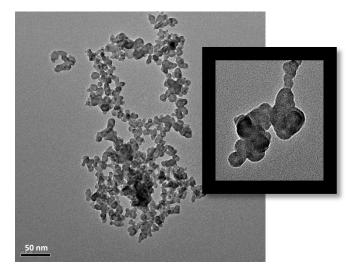
Torrefied biomasses are <u>oxygen-rich</u> Torrefied rice hull <u>contains</u> ~ 11% silica

CONFIDENTIAL

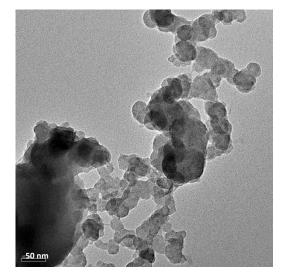
ELEMENTAL ANALYSIS OF BIOMASS

TORREFIED BIOMASS	% C	% H	% O	% N	% Si
SORGHUM	54	3	20	1	5
ALMOND	54	6	36	1	1
WALNUT	63	6	29	0.5	1
PISTACHIO	65	5	32	0.4	0.2
RICE HULL	41	4	26	0.5	11

- TORREFIED BIOMASS RETAIN FUNCTIONALITY AFTER PRETREATMENT
- SORGHUM AND RICE HULL CONTAINED SILICA


PARTICLE SIZES

TORREFIED BIOMASS	AVERAGE PARTICLE SIZE (microns)		
SORGHUM	3		
ALMOND	150		
WALNUT	150		
PISTACHIO	150		
RICE HULL	250		


- SAMPLES WERE GROUND USING THE CRYO-GRINDER
- SORGHUM WAS TORREFIED AT ANOTHER LOCATION. IT MAY HAVE BEEN TORREFIED AT A HIGHER TEMPERATURE, THUS INCREASING IT'S GRINDABILITY

TEM OF CARBON BLACK & TORREFIED SORGHUM

CARBON BLACK

TORREFIED BIOMASS

CONFIDENTIAL

CALORIFIC VALUES

BIOMASS	BEFORE TORREFACTION (J/g)	AFTER TORREFACTION (J/g)	
SORGHUM	No value from Joe James	18,928	
ALMOND	17,319	21,205	
WALNUT	18,574	23,810	

- HOUSE COAL HAS A CALORIFIC VALUE 30,000 J/g
- ENERGY DENSITY OF INCREASES AFTER TORREFACTION

CONFIDENTIAL

The New York Times Making Tires From a Desert Shrub Found in the U.S.

By DIANE CARDWELL AUG. 18, 2015

USDA researchers are partnering with tire companies to provide a domestic source of rubber to make US-produced rubber tires.

Colleen McMahan

Grow Plastics Technology in Packaging

Equivalent/Superior Strength

Thermally Stable

Greener

100% Bio Based

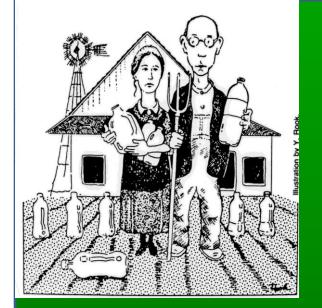
Up to 80% CO₂ Reductions from Materials Lower Cost

Beat Solid Plastics on Price by up to 40%

Next Steps....

- Work to isolate sugars from hulls for
 - Feed? Ethanol? Food?
 - Explore synergies with sugar beet
- Find new uses for spent hulls.
- Explore new uses for torrefied shells,
 - Plastics
 - Rubber tires!
- Take advantage of the fact that the hulls and shells are aggregated, in California.....

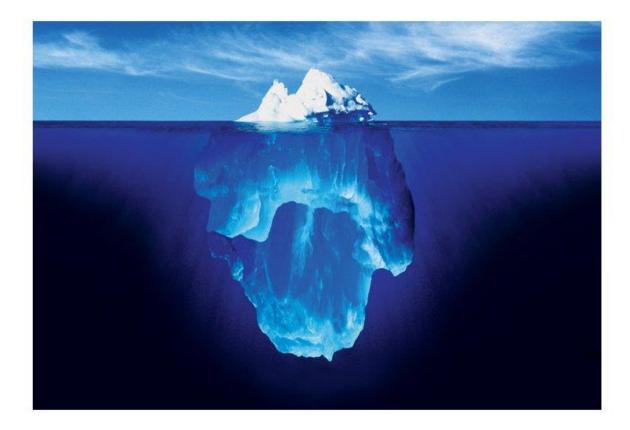
Acknowledgements


- California Department of Food and Agriculture (Grant # SCB11021)
- **RPAC Almonds for donating almond shells**


Oils and Rubber Colleen McMahan Grace Chen Ken Lin **Tom McKeon Biofuels Kevin Holtman Charles Lee Kurt Wagschal Dominic Wong Bioproducts Greg Glenn Bor-Sen Chiou De Wood**

A player to be named

William Orts 510-559-5730 bill.orts@ars.usda.gov

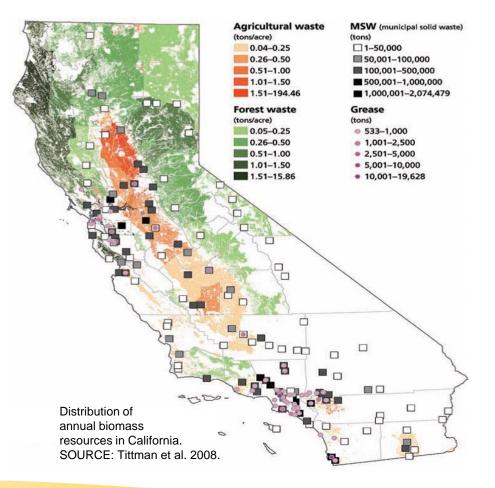


Partnerships

Dr. Glenda Humiston, UC Davis

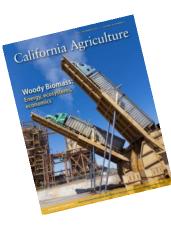
Growing the Bio-Economy

Energy ~ **Products**



Dr. Glenda Humiston, Vice President Agriculture and Natural Resources University of California

Healthy Communities Healthy Food Systems Healthy Environments Healthy Californians


California has many sources and very high volumes of biomass this is both a challenge and an opportunity!

Solar is in, biomass energy is out—and farmers are struggling to dispose of woody waste

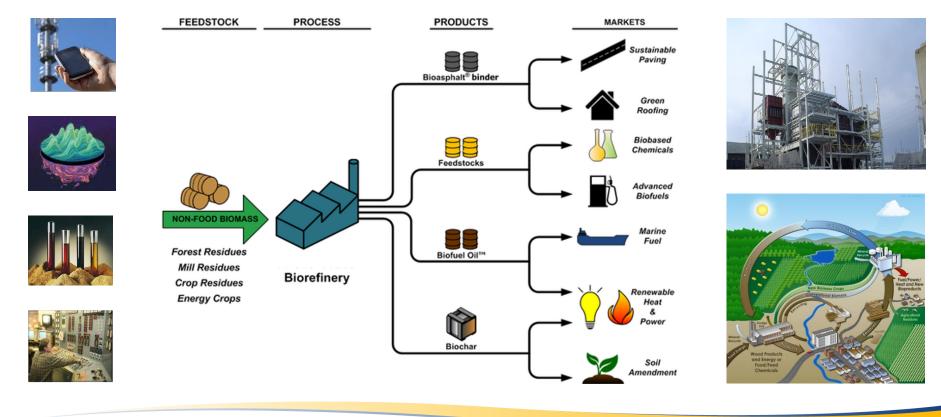
Combustion for electricity is not the future...

California's Homeless Biomass Problem

Biomass power generation in California is threatened by expiring contracts, low energy prices and an unlevel playing field, leaving millions of tons of biomass fuel without a use.

By Ron Kotrba | August 25, 2015

California's immense stores of waste biomass once had a plush abode in the equitably priced, long-term power purchase agreements (PPA) that stemmed from the state's aggressive interpretation of federal legislation-the Public Utilities Regulatory Policy Act of 1978-born out of the energy crisis of the early 1970s. At its peak in the early 1990s, the California biomass energy industry produced almost 4.5 billion kilowatt-hours (kWh) per year of electricity, according to the National Renewable Energy Laboratory, and each year provided a good home to more than 10 million tons of the state's solid wastes. PURPA required electric utility companies to buy privately produced power at their avoided cost of generation, in essence spawning development of the independent power industry in the U.S. High avoided cost rates. particularly in California, and favorable federal tax policy for renewable energy projects provided the impetus under PURPA for explosive growth for the state's biomass power industry.

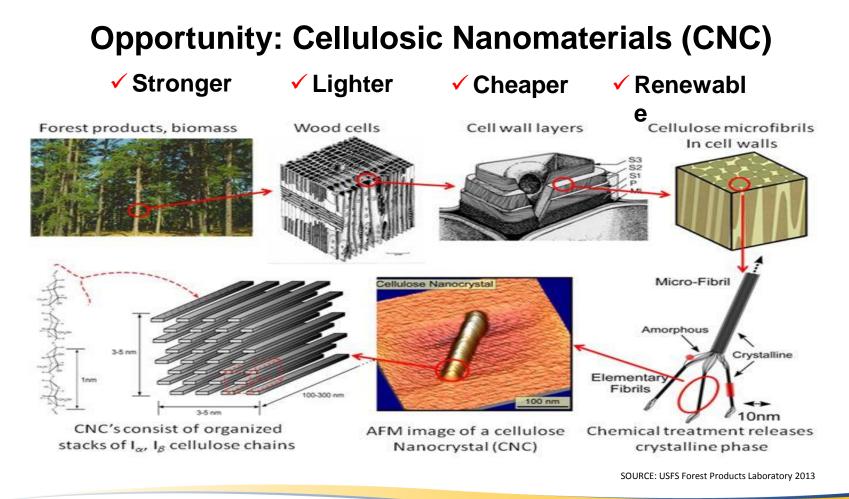


AWAITING ACTION: Greenleaf Power idled this 17-MW biomass power plant in Tracy, California, last fall when it could not compete on an unlevel plaving field with solar and wind, and low natural gas prices, the basis for pricing under new PPAs.

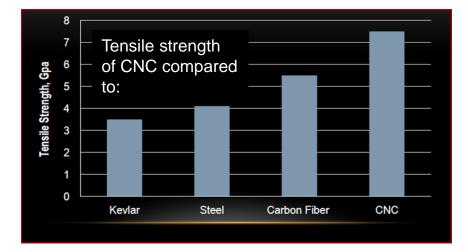
PHOTO: GREENLEAF POWER

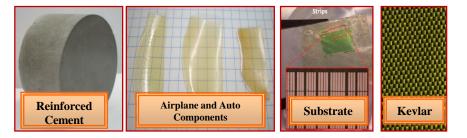
Expanding BioProducts Requires Innovation & New Technology

Biodegradable Plastics from Biomass


Commercial bioplastic is already made from cellulose – replacing petroleum-based plastics. Scientists developed means to ferment a broader range of cellulosic materials – enabling large scale commercial production.

An estimated \$375 billion market for chemical, plastic, and rubber products represents a huge bioeconomy opportunity.


www.milkeninstitute.org/publications/view/461



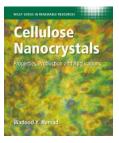
Opportunity: Cellulosic Nanomaterials (CNC)

Wood pellets \$155 (100% conversion)

Fuel Ethanol \$255 (@100 gallons/ton)

High Brightness Paper \$500 (\$1,000/ton - 45% yield)

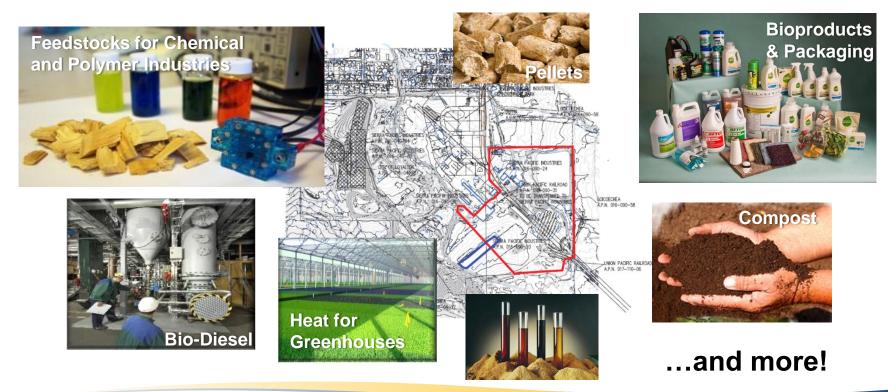
Cellulose Nanocrystals \$1,350 (\$6,000/ton - 23% yield) SOURCE: USFS Forest Products Laboratory 2013


Adding nanocellulose material to cement makes concrete about 22% stronger, lighter and more elastic. And, carbon is sequestered!

Siskiyou County is partnering with US Forest Service and several private sector partners on three possible applications for nanocellulose materials :

- \checkmark as a cement additive to improve the structural characteristics of concrete.
- \checkmark as a coating for fruit pallets to extend the usable life of wood pallets.
- \checkmark as additives for bridge coverings and tennis courts (concrete and/or asphalt).

It is projected that cellulosic nanomaterial could have a market penetration as high as 3-4% across target markets building to over 24 million tons of demand.


This could create ~224,000 jobs and GDP value of over \$100 billion in the US – as projected by the National Nanotechnology Initiative and National Science Foundation study.

Research on High-Value Biobased Products Supports Forest Health & Economic Development Opportunities.

Research & Extension Centers

- 9 locations statewide
- Over 12,000 acres
- Kearney REC Lindcove REC Hansen REC • UC Cooperative Extension bast REC **Research and Extension Center** Desert REC Agricultural Experiment Station (AES)

UC Cooperative Extension

- 200+ Advisors who live/work in local communities
- 130+ Campus-based UCCE Specialists

Agricultural Experiment Station

• 650+ researchers across the entire UC system

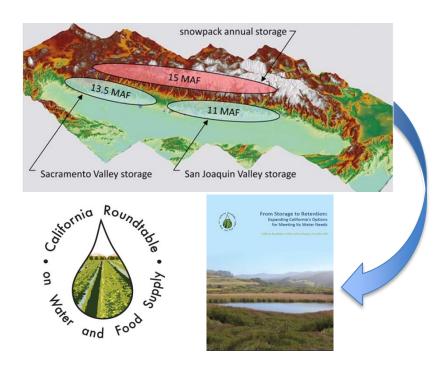
UC CE

Statewide Programs & Institutes

- Ag Issues Center
- Integrated Pest Management Center
- Informatics & GIS
- Nutrition Policy Institute
- Sustainable Ag Research & Education
- Water Research Institute
- Youth Development and 4-H

University of California Agriculture and Natural Resources

Intermountain REC



Over 300 California Firms Produce a Wide Array of Bio-Based Products

February 2012: Presidential Executive Order requires federal agencies & contractors to utilize biobased products.

Healthy watersheds could produce 9–16% more water for California

Clouds Canals Upper Snowpack Reservoirs **Vatersheds** urface Water Rivers CC/ Farm Ponds R. Oceans 8. Streams Floodplain Wetlands Groundwa Aquifers

"Effect of forest management on water yields and other ecosystem services in Sierra Nevada forests".

UCM Faculty: Roger BalesUCB AES Faculty: Kevin O'HaraUCCE Advisor: Susan KocherUCCE Specialist: Bill Stewart

http://aginnovations.org/images/uploads/CRWFS_Storage_FINAL.pdf

"Layers" of Funding & Economic Activity Will be Needed

Value of Biobased Products will help finance forest health activities – probably not enough.

Augment with Cap & Trade Credits

Need to monetize value of "reclaimed" water from forest health activities!

Working Landscapes

Agriculture ~ Forests ~ Fisheries ~ Mining Watersheds ~ Energy ~ Recreation ~ Habitat

1.2 Million Jobs in California \$318 Billion Direct Sales & Exports 272,000+ New Jobs in Five Years

www.caeconomy.org/resources/entry/2013-california-economic-summit-playbook 2012 Data developed by Center of Excellence Research Office, CA Community Colleges

Synergia (Greek): creation of a whole greater than the sum of its parts.

Strategy for a Sustainable California

cdta

CALIFORNIA DEPARTMENT OF FOOD & AGRICULTURE

Synergos (Greek): "working together".

Global Food Initiative

Glenda Humiston Vice President, Agriculture & Natural Resources University of California Glenda.Humiston@ucop.edu 510-987-0716 http://ucanr.edu/

Healthy Communities Healthy Food Systems Healthy Environments Healthy Californians University of California Agriculture and Natural Resources

Questions?

