



### Irrigation Strategies for Drought Management

**Bob Curtis** 

Almond Board of California







### Irrigation Strategies for Drought Management

Bruce Lampinen

Ken Shackel

Blake Sanden UCCE-Kern County

Allan Fulton UCCE-Tehama County

David Doll





#### We survived droughts in the past but have things changed?

Bruce Lampinen UC Davis Plant Sciences







#### Light interception versus yield relationship





# Yield potential is 50 kernel pounds per 1% of total incoming PAR intercepted by the canopy



All almond light bar sites 2009-2012 data



### California almond orchard tree density increase from 1986 to 2012





Year

# California almond yield increase from 1986 to 2012





# Multiple year yield results for different levels of water application





# Multiple year yield results for different levels of water application





# This figure looks a lot like our yield versus light interception figure





### With this information you can calculate water needs based on canopy size or yield





### Chart showing Midday PAR interception versus estimated water needs and yield potential



midday PAR/1.42 = applied plus stored water applied plus stored water x 71 = yield potential PAR interception/142 = applied plus stored water

| Midday PAR<br>interception | Applied plus<br>stored water<br>(inches) | Yield potential<br>(kernel lbs/ac) |
|----------------------------|------------------------------------------|------------------------------------|
| 10 /1.4                    | 42 = 7 x 7                               | 1 = 500                            |
| 20                         | 14                                       | 1000                               |
| 30                         | 21                                       | 1500                               |
| 40                         | 28                                       | 2000                               |
| 50                         | 35                                       | 2500                               |
| 60                         | 42                                       | 3000                               |
| 70                         | 49                                       | 3500                               |
| 80                         | 56                                       | 4000                               |
| 90                         | 63                                       | 4500                               |

# This equates to a <u>yield</u> increase of 46 lbs/acre per year





#### 1995 to 2012 average almond <u>yield</u>



Statewide per acre almond yield 1995 to 2012

The Almond Conference

Year

This equates to an increase of in <u>PAR interception</u> of 1.6% per year for average California orchard





#### Per acre almond yield for average orchard and best grower orchard from 1995 to 2012





California statewide per acre almond yield

Year

### <u>Water needs</u> for average orchard and best grower orchard from 1995 to 2012



Predicted water needs (increasing at a rate of 1.1 inches per year for average grower and 1.7 inches per year for best grower)



Year

#### Dryland almonds in Yolo County





### Average annual precipitation in California 1961-1990





### Ground cover also uses water





#### ~35% PAR interception needs ~25 inches of water

~40% PAR interception from trees plus 40% from grass = 80% total needs ~56" of water



#### High light interception means high water use





Strategy to handle drought depends where you are in applied water/yield spectrum



| Midday PAR<br>interception | Applied plus<br>stored water<br>(inches) | Yield potential<br>(kernel lbs/ac) |                   |
|----------------------------|------------------------------------------|------------------------------------|-------------------|
| 10                         | 7                                        | 500                                |                   |
| 20                         | 14                                       | 1000 🔶                             | Least productive  |
| 30                         | 21                                       | 1500                               |                   |
| 40                         | 28                                       | 2000                               |                   |
| 50                         | 35                                       | 2500                               | Statewide average |
| 60                         | 42                                       | 3000                               |                   |
| 70                         | 49                                       | 3500                               |                   |
| 80                         | 56                                       | 4000 🧲                             | Best orchards     |
| 90                         | 63                                       | 4500                               |                   |

### Drought impacts more severe now



Drought will have much larger impacts in 2012 versus in 1991-1992 Impact on your orchards will depend on winter rainfall and canopy cover/productivity

1991-1992

State Water Project water deliveries were 50% of normal Average almond orchard was producing 1200 kernel pounds per acre so would have required about 17 inches of water

2012

Average almond orchard produced about 2500 kernel pounds per acre so would require about 35 inches of water Best orchards producing about 4000 kernel pounds per acre so would require about 56 inches of water

If State Water project delivered 50% of normal Average orchard deficit 1991-1992 = 8.5 inches Average orchard deficit 2012 = 17.5 inches Best orchard deficit 2012 = 28 inches





### Drought

Ken Shackel UC Davis

What it means to the tree, and how best to deal with it



### The current US Drought Monitor







- 1) Control weeds.
- 2) No evidence that heavy pruning or kaolin/whitewash sprays do any economic good to mitigate drought conditions.
- 3) Mild to moderate stress at the start of hull split is a good idea to speed up hull split and reduce hull rot.
- 4) Use a pressure chamber to identify areas of severe stress and adjust your irrigation approach before these areas become a problem.

Example of field variability in a hull rot deficit irrigation test



Irrigation causes moderate stress in these trees But the same irrigation causes severe stress in these trees



#### For Almond

| SWP range<br>(bars) | Stress level           |
|---------------------|------------------------|
| -5 to -10           | Minimal                |
| -10 to -16          | Mild                   |
| -16 to -24          | Moderate               |
| -24 to -30          | Severe                 |
| -60                 | (complete defoliation) |

#### (For other crops)

TENTATIVE GUIDELINES FOR INTERPRETING PRESSURE CHAMBER READINGS (MIDDAY STEM WATER POTENTIAL-SWP) IN WALNUT, ALMOND, AND DRIED PLUM. UPDATED MAY 2007.

Allan Fulton and Richard Buchner, UCCE Farm Advisors, Tehama County, Joe Grant, Farm Advisor, San Joaquin County, Terry Prichard, Bruce Lampinen, Larry Schwankl, Extension Specialists, UC Davis, and Ken Shackel, Professor UC Davis.

| ssure Chamber Reading | WALNUT                                                                                                                                                                                                                                       | AL MOND                                                                                                                                                                                      | BRUNES                                                                                                                                                       |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (- Dais)              | Not componed                                                                                                                                                                                                                                 | Not commonly observed                                                                                                                                                                        | Not commonly observed                                                                                                                                        |
| -2.0 to -4.0          | Fully imgated, low stress, commonly observed when<br>orchards are imgated according to estimates of real-<br>time evapotranspiration (ETc), long term root and tree<br>health may be a concern, especially on California<br>Black rootstock. |                                                                                                                                                                                              |                                                                                                                                                              |
| -4.0 to -6.0          | Low to mild stress, high rate of shoot growth visible,<br>suggested level from leaf-out until mid June when nut<br>sizing is completed.                                                                                                      | Ļ                                                                                                                                                                                            | Ļ                                                                                                                                                            |
| -6.0 to -8.0          | Mild to moderate stress, shoot growth in non-bearing<br>and bearing trees has been observed to decline.<br>These levels do not appear to affect kernel<br>development.                                                                       | Low stress, indicator of fully irrigated conditions, ideal<br>conditions for shoot growth. Suggest maintaining<br>these levels from leaf-out through mid June.                               | Low stress, common from March to mid April under<br>fully irrigated conditions. Ideal for maximum shoot<br>growth.                                           |
| -8.0 to -10.0         | Moderate to high stress, shoot growth in non-bearing<br>trees may stop, nut sizing may be reduced in bearing<br>trees and bud development for next season may be<br>negatively affected.                                                     | Ļ                                                                                                                                                                                            | Suggested levels in late April through mid June. Low<br>stress levels enabling shoot growth and fruit sizing.                                                |
| -10.0 to -12.0        | High stress, temporary wilting of leaves has been<br>observed. New shoot growth may be sparse or absent<br>and some defoliation may be evident. Nut size likely to<br>be reduced.                                                            | Mild to moderate stress, these levels of stress may<br>be appropriate during the phase of growth just before<br>the onset of hull split (late June).                                         | July. Shoot growth slowed but fruit sizing unaffected.                                                                                                       |
| -12.0 to -14.0        | Relative high levels of stress, moderate to severe<br>defoliation, should be avoided.                                                                                                                                                        | Ļ                                                                                                                                                                                            | Mild to moderate stress suggested for August to<br>achieve desirable sugar content in fruit and to reduce<br>"dry-away" (drying costs).                      |
| -14.0 to -18.0        | Severe defoliation, trees are likely dying.                                                                                                                                                                                                  | Moderate stress in almond.<br>Suggested stress level during hull split, Help control<br>diseases such as hull rot and alternaria, if diseases<br>are present. Hull split occurs more rapidly | Moderate stress acceptable in September.                                                                                                                     |
| -18.0 to -20.0        | Crop stress levels in English walnut not observed at these levels.                                                                                                                                                                           | Transitioning from moderate to higher crop stress<br>levels                                                                                                                                  | Moderate to high stress levels. Most commonly<br>observed after harvest. Generally undesirable during<br>any step of tree or fail growth. Most appropriately |
| -20 to -30            |                                                                                                                                                                                                                                              | High stress, wilting observed, some defoliation                                                                                                                                              | managed with post-harvest irrigation                                                                                                                         |
| Less than - 30        | •                                                                                                                                                                                                                                            | Extensive defoliation has been observed                                                                                                                                                      | High stress, extensive defoliation                                                                                                                           |

\* These guidelines are tentative and subject to change as research and development with the pressure chamber and midday stem water potential progress. This table should not be duplicated without proc consent by the authors.

#### Resources to help with the pressure chamber



#### New 'baseline' website:

#### http://informatics.plantsciences.ucdavis.edu/Brooke\_Jacobs/index.php



📇 PRIN

#### **Calculating Stem Water Potential**

In the box below select the CIMIS <u>weather station</u> closest to your orchard, or with the most similar climatic conditions. The map on the right can be used to zoom in on individual locations to help <u>select the best</u> station to calculate reference water potential. After selecting the appropriate station enter the date (within one week) and the time of pressure chamber readings. Temperature, relative humidity, and reference water potential values for almond, prune, walnut, and grape (both SWP and LWP) are displayed.

After selecting the appropriate station enter the date (must be within one week of the current date) and the time of <u>pressure chamber</u> readings. <u>Pacific standard</u> time is used, subtract one hour from daylight savings time.



#### **CIMIS Weather Stations**



#### The drought of 2007-2009 (source: DWR 2010 report)





#### In California, "drought" means low winter rains. We <u>always</u> have dry summers!



#### Almond "full" ETc (inches per month) for two locations in a wet year (2006) and a dry year (2007)

|       | Tehama     |            | Kings      |            |
|-------|------------|------------|------------|------------|
|       | 2006       | 2007       | 2006       | 2007       |
| Month | (Wet year) | (Dry year) | (Wet year) | (Dry year) |
| Feb   | 1.0        | 0.7        | 1.1        | 0.9        |
| Mar   | 1.6        | 2.5        | 1.8        | 2.7        |
| Apr   | 3.2        | 4.0        | 3.4        | 4.2        |
| May   | 6.5        | 7.1        | 6.6        | 7.1        |
| June  | 8.4        | 8.9        | 8.0        | 8.3        |
| July  | 9.4        | 8.9        | 8.6        | 8.5        |
| Aug   | 8.0        | 8.3        | 8.0        | 7.9        |
| Sep   | 6.1        | 5.5        | 5.9        | 5.8        |
| Oct   | 3.8        | 3.2        | 3.1        | 3.3        |
| Nov   | 0.9        | 1.8        | 1.3        | 1.6        |
| Total | 48.9       | 50.9       | 47.8       | 50.3       |

#### Start your plan using 'average' year values





#### Reference ET (ETo) map from DWR

http://wwwcimis.water.ca.gov

"BASIC IRRIGATION SCHEDULING (BIS)" excel file from <u>http://biomet.ucdavis.edu/irriga</u> <u>tion\_scheduling/bis/BIS.htm</u>

### Apply the same % of full ET across the season to reach your target total





Simple approach to drought (i.e., a fixed level of deficit all season)



|       | NORMAL | 70%   |
|-------|--------|-------|
| Month | Hr/wk  | Hr/wk |
| Feb   | 6      | 4     |
| Mar   | 14     | 10    |
| Apr   | 28     | 19    |
| May   | 43     | 30    |
| Jun   | 52     | 36    |
| Jul   | 58     | 40    |
| Aug   | 52     | 36    |
| Sep   | 36     | 25    |
| Oct   | 22     | 15    |
| Nov   | 8      | 6     |
| Dec   | 3      | 2     |

Practical issues that may impact the simple approach

 Frost protection? (might allow later start of irrigation in spring)

2) Lack of flexibility in water deliveries, run times, or run days? (may cause feast/famine problems)

3) Salinity management?

#### 3 arguments against a 'simple approach'

- 1) What about 'stress sensitive' stages?
- bloom?
- post harvest?
- 2) Am I 'wasting water' if I just give small amounts?
- 3) Don't I need to maintain irrigation at 100% ET early on to avoid the depletion of deep soil water?


- > 1993 -1996 study (Goldhamer et al, 2006), Southern SJV, 18 year-old orchard
- > 3' root zone, 7.5" average rainfall during study (no pre-irrigation)
- ➤ Control (100% Etc = 42")
- ➤ 3 levels of irrigation deficit (34", 28", 23") (80%, 67%, 55%)
- > 3 patterns of deficit  $\triangle$  B  $\square$



"C" pattern: Equal irrigation deficit all season







(Goldhamer et al., 2006)



### Mean Kernel Yield (lbs/ac) 1993-1996 An **even deficit** over the season always gave the best result



(Goldhamer et al., 2006)



### Early season deficit irrigation and tree stress (SWP): Kings Co.

| Voor                          | <br>  Month   Rain | Doin  | Deficit |       | Со    | ntrol | Over  |      | Baseline |
|-------------------------------|--------------------|-------|---------|-------|-------|-------|-------|------|----------|
| rear                          | Monun              | Rain  | Irrig   | SWP   | Irrig | SWP   | Irrig | SWP  | SWP      |
|                               | Jan                | 2.06" |         | -2.3  |       | -2.1  |       | -2.1 | -4.4     |
| 2011                          | Feb                | 0.69" | 0.45"   | -2.9  | 1.80" | -2.7  | 1.80" | -2.7 | -5.3     |
| (WET                          | Mar                |       |         | -4.3  |       | -4.3  |       | -4.3 | -5.4     |
| December)                     | E. Apr             |       |         | -6.2  | 2.12" | -5.8  | 2.76" | -5.7 | -5.9     |
| ,                             | L. Apr             |       | 0.37"   | -12.2 | 2.95" | -7.3  | 3.84" | -7.8 | -6.1     |
|                               | Jan                | 0.07" |         | -4.6  |       | -4.7  |       | -4.7 | -5.3     |
| 2012                          | Feb                | 0.32" | 0.33"   | -5.0  | 1.84" | -4.1  | 2.00" | -4.8 | -5.5     |
| (DRY<br>Previous<br>December) | Mar                | 1.57" |         | -5.8  | 1.92" | -5.5  |       | -5.3 | -5.7     |
|                               | E. Apr             | 0.03" |         | -6.4  | 1.55" | -4.7  | 2.02" | -4.7 | -5.7     |
|                               | L. Apr             | 1.06" | 1.87"   | -6.5  | 2.87" | -4.8  | 3.33" | -4.7 | -6.2     |

#### (Sebastian Saa Silva et al, unpublished)



#### Early season deficit irrigation and tree stress (SWP): Kings Co.

| Voor                  | Month Rain | Doin  | Deficit |       | Control |      | Over  |      | Baseline |
|-----------------------|------------|-------|---------|-------|---------|------|-------|------|----------|
| real                  | WORT       | Rain  | Irrig   | SWP   | Irrig   | SWP  | Irrig | SWP  | SWP      |
|                       | Jan        | 2.06" |         | -2.3  |         | -2.1 |       | -2.1 | -4.4     |
| 2011                  | Feb        | 0.69" | 0.45"   | -2.9  | 1.80"   | -2.7 | 1.80" | -2.7 | -5.3     |
| (WET                  | Mar        |       |         | -4.3  |         | -4.3 |       | -4.3 | -5.4     |
| December)             | E. Apr     |       |         | -6.2  | 2.12"   | -5.8 | 2.76" | -5.7 | -5.9     |
| ,                     | L. Apr     |       | 0.37"   | -12.2 | 2.95"   | -7.3 | 3.84" | -7.8 | -6.1     |
|                       | Jan        | 0.07" |         | -4.6  |         | -4.7 |       | -4.7 | -5.3     |
| 2012                  | Feb        | 0.32" | 0.33"   | -5.0  | 1.84"   | -4.1 | 2.00" | -4.8 | -5.5     |
| (DRY<br>Draviaua      | Mar        | 1.57" |         | -5.8  | 1.92"   | -5.5 |       | -5.3 | -5.7     |
| Previous<br>December) | E. Apr     | 0.03" |         | -6.4  | 1.55"   | -4.7 | 2.02" | -4.7 | -5.7     |
|                       | L. Apr     | 1.06" | 1.87"   | -6.5  | 2.87"   | -4.8 | 3.33" | -4.7 | -6.2     |

(Saa Silva et al, unpublished)



#### Early season deficit irrigation and tree stress (SWP): Kings Co.

| Voor                  | Month Rain | De    | Deficit |       | ntrol | Over |       | Baseline |      |
|-----------------------|------------|-------|---------|-------|-------|------|-------|----------|------|
| real                  | WORT       | Rain  | Irrig   | SWP   | Irrig | SWP  | Irrig | SWP      | SWP  |
|                       | Jan        | 2.06" |         | -2.3  |       | -2.1 |       | -2.1     | -4.4 |
| 2011                  | Feb        | 0.69" | 0.45"   | -2.9  | 1.80" | -2.7 | 1.80" | -2.7     | -5.3 |
| (WET                  | Mar        |       |         | -4.3  |       | -4.3 |       | -4.3     | -5.4 |
| December)             | E. Apr     |       |         | -6.2  | 2.12" | -5.8 | 2.76" | -5.7     | -5.9 |
| ,                     | L. Apr     |       | 0.37"   | -12.2 | 2.95" | -7.3 | 3.84" | -7.8     | -6.1 |
|                       | Jan        | 0.07" |         | -4.6  |       | -4.7 |       | -4.7     | -5.3 |
| 2012                  | Feb        | 0.32" | 0.33"   | -5.0  | 1.84" | -4.1 | 2.00" | -4.8     | -5.5 |
| (DRY<br>Draviaua      | Mar        | 1.57" |         | -5.8  | 1.92" | -5.5 |       | -5.3     | -5.7 |
| Previous<br>December) | E. Apr     | 0.03" |         | -6.4  | 1.55" | -4.7 | 2.02" | -4.7     | -5.7 |
|                       | L. Apr     | 1.06" | 1.87"   | -6.5  | 2.87" | -4.8 | 3.33" | -4.7     | -6.2 |

(Saa Silva et al, unpublished)



Early season deficit irrigation and tree stress (SWP): Kings Co.

| Veer                          | Month Rain | Dain  | Deficit |       | Cor   | ntrol | Ov    | ver  | Baseline |
|-------------------------------|------------|-------|---------|-------|-------|-------|-------|------|----------|
| rear                          | WORT       | Rain  | Irrig   | SWP   | Irrig | SWP   | Irrig | SWP  | SWP      |
|                               | Jan        | 2.06" |         | -2.3  |       | -2.1  |       | -2.1 | -4.4     |
| 2011                          | Feb        | 0.69" | 0.45"   | -2.9  | 1.80" | -2.7  | 1.80" | -2.7 | -5.3     |
| (WET                          | Mar        |       |         | -4.3  |       | -4.3  |       | -4.3 | -5.4     |
| Previous<br>December)         | E. Apr     |       |         | -6.2  | 2.12" | -5.8  | 2.76" | -5.7 | -5.9     |
| ,                             | L. Apr     |       | 0.37"   | -12.2 | 2.95" | -7.3  | 3.84" | -7.8 | -6.1     |
|                               | Jan        | 0.07" |         | -4.6  |       | -4.7  |       | -4.7 | -5.3     |
| 2012                          | Feb        | 0.32" | 0.33"   | -5.0  | 1.84" | -4.1  | 2.00" | -4.8 | -5.5     |
| (DRY<br>Previous<br>December) | Mar        | 1.57" |         | -5.8  | 1.92" | -5.5  |       | -5.3 | -5.7     |
|                               | E. Apr     | 0.03" |         | -6.4  | 1.55" | -4.7  | 2.02" | -4.7 | -5.7     |
| ,                             | L. Apr     | 1.06" | 1.87"   | -6.5  | 2.87" | -4.8  | 3.33" | -4.7 | -6.2     |



### Early season deficit irrigation and tree stress (SWP): Kings Co.

| Voor                  | Month R | Doin  | Deficit |       | Control |      | Over  |      | Baseline |
|-----------------------|---------|-------|---------|-------|---------|------|-------|------|----------|
| rear                  | MONUN   | Rain  | Irrig   | SWP   | Irrig   | SWP  | Irrig | SWP  | SWP      |
|                       | Jan     | 2.06" |         | -2.3  |         | -2.1 |       | -2.1 | -4.4     |
| 2011                  | Feb     | 0.69" | 0.45"   | -2.9  | 1.80"   | -2.7 | 1.80" | -2.7 | -5.3     |
| (WET                  | Mar     |       |         | -4.3  |         | -4.3 |       | -4.3 | -5.4     |
| December)             | E. Apr  |       |         | -6.2  | 2.12"   | -5.8 | 2.76" | -5.7 | -5.9     |
| ,                     | L. Apr  |       | 0.37"   | -12.2 | 2.95"   | -7.3 | 3.84" | -7.8 | -6.1     |
|                       | Jan     | 0.07" |         | -4.6  |         | -4.7 |       | -4.7 | -5.3     |
| 2012                  | Feb     | 0.32" | 0.33"   | -5.0  | 1.84"   | -4.1 | 2.00" | -4.8 | -5.5     |
| (DRY<br>Brovious      | Mar     | 1.57" |         | -5.8  | 1.92"   | -5.5 |       | -5.3 | -5.7     |
| Previous<br>December) | E. Apr  | 0.03" |         | -6.4  | 1.55"   | -4.7 | 2.02" | -4.7 | -5.7     |
| ,                     | L. Apr  | 1.06" | 1.87"   | -6.5  | 2.87"   | -4.8 | 3.33" | -4.7 | -6.2     |

(Saa Silva et al, unpublished)



Early season deficit irrigation and tree stress (SWP): Kings Co.

| Veer                  | Month   Rain | Dain  | Deficit |       | Cor   | ntrol | Ov    | /er  | Baseline |
|-----------------------|--------------|-------|---------|-------|-------|-------|-------|------|----------|
| rear                  | WORT         | Rain  | Irrig   | SWP   | Irrig | SWP   | Irrig | SWP  | SWP      |
|                       | Jan          | 2.06" |         | -2.3  |       | -2.1  |       | -2.1 | -4.4     |
| 2011                  | Feb          | 0.69" | 0.45"   | -2.9  | 1.80" | -2.7  | 1.80" | -2.7 | -5.3     |
| (WET                  | Mar          |       |         | -4.3  |       | -4.3  |       | -4.3 | -5.4     |
| December)             | E. Apr       |       |         | -6.2  | 2.12" | -5.8  | 2.76" | -5.7 | -5.9     |
| ,                     | L. Apr       |       | 0.37"   | -12.2 | 2.95" | -7.3  | 3.84" | -7.8 | -6.1     |
|                       | Jan          | 0.07" |         | -4.6  |       | -4.7  |       | -4.7 | -5.3     |
| 2012                  | Feb          | 0.32" | 0.33"   | -5.0  | 1.84" | -4.1  | 2.00" | -4.8 | -5.5     |
| (DRY<br>Drovious      | Mar          | 1.57" |         | -5.8  | 1.92" | -5.5  |       | -5.3 | -5.7     |
| Previous<br>December) | E. Apr       | 0.03" |         | -6.4  | 1.55" | -4.7  | 2.02" | -4.7 | -5.7     |
| ,                     | L. Apr       | 1.06" | 1.87"   | -6.5  | 2.87" | -4.8  | 3.33" | -4.7 | -6.2     |



Early season deficit irrigation and tree stress (SWP): Kings Co.

| Veer                          | Month  | Dain  | De    | Deficit |       | ntrol | Ov    | ver  | Baseline |
|-------------------------------|--------|-------|-------|---------|-------|-------|-------|------|----------|
| rear                          | WORT   | Rain  | Irrig | SWP     | Irrig | SWP   | Irrig | SWP  | SWP      |
|                               | Jan    | 2.06" |       | -2.3    |       | -2.1  |       | -2.1 | -4.4     |
| 2011                          | Feb    | 0.69" | 0.45" | -2.9    | 1.80" | -2.7  | 1.80" | -2.7 | -5.3     |
| (WET                          | Mar    |       |       | -4.3    |       | -4.3  |       | -4.3 | -5.4     |
| Previous<br>December)         | E. Apr |       |       | -6.2    | 2.12" | -5.8  | 2.76" | -5.7 | -5.9     |
|                               | L. Apr |       | 0.37" | -12.2   | 2.95" | -7.3  | 3.84" | -7.8 | -6.1     |
|                               | Jan    | 0.07" |       | -4.6    |       | -4.7  |       | -4.7 | -5.3     |
| 2012                          | Feb    | 0.32" | 0.33" | -5.0    | 1.84" | -4.1  | 2.00" | -4.8 | -5.5     |
| (DRY<br>Previous<br>December) | Mar    | 1.57" |       | -5.8    | 1.92" | -5.5  |       | -5.3 | -5.7     |
|                               | E. Apr | 0.03" |       | -6.4    | 1.55" | -4.7  | 2.02" | -4.7 | -5.7     |
|                               | L. Apr | 1.06" | 1.87" | -6.5    | 2.87" | -4.8  | 3.33" | -4.7 | -6.2     |



### Early season deficit irrigation and tree stress (SWP): Kings Co.

| Veer                  | Month Ra | Dain  | De    | Deficit |       | ntrol | Over  |      | Baseline |
|-----------------------|----------|-------|-------|---------|-------|-------|-------|------|----------|
| rear                  | MONUN    | Rain  | Irrig | SWP     | Irrig | SWP   | Irrig | SWP  | SWP      |
|                       | Jan      | 2.06" |       | -2.3    |       | -2.1  |       | -2.1 | -4.4     |
| 2011                  | Feb      | 0.69" | 0.45" | -2.9    | 1.80" | -2.7  | 1.80" | -2.7 | -5.3     |
| (WET                  | Mar      |       |       | -4.3    |       | -4.3  |       | -4.3 | -5.4     |
| December)             | E. Apr   |       |       | -6.2    | 2.12" | -5.8  | 2.76" | -5.7 | -5.9     |
| ,                     | L. Apr   |       | 0.37" | -12.2   | 2.95" | -7.3  | 3.84" | -7.8 | -6.1     |
|                       | Jan      | 0.07" |       | -4.6    |       | -4.7  |       | -4.7 | -5.3     |
| 2012                  | Feb      | 0.32" | 0.33" | -5.0    | 1.84" | -4.1  | 2.00" | -4.8 | -5.5     |
| (DRY                  | Mar      | 1.57" |       | -5.8    | 1.92" | -5.5  |       | -5.3 | -5.7     |
| Previous<br>December) | E. Apr   | 0.03" |       | -6.4    | 1.55" | -4.7  | 2.02" | -4.7 | -5.7     |
| ,                     | L. Apr   | 1.06" | 1.87" | -6.5    | 2.87" | -4.8  | 3.33" | -4.7 | -6.2     |

(Saa Silva et al, unpublished)



### **Bottom line:**

### no clear indication of an irrigation deficit until April

| Voor                  | Month Rain | De    | Deficit |       | ntrol | Over |       | Baseline |      |
|-----------------------|------------|-------|---------|-------|-------|------|-------|----------|------|
| rear                  | Month      | Rain  | Irrig   | SWP   | Irrig | SWP  | Irrig | SWP      | SWP  |
|                       | Jan        | 2.06" |         | -2.3  |       | -2.1 |       | -2.1     | -4.4 |
| 2011                  | Feb        | 0.69" | 0.45"   | -2.9  | 1.80" | -2.7 | 1.80" | -2.7     | -5.3 |
| (WET                  | Mar        |       |         | -4.3  |       | -4.3 |       | -4.3     | -5.4 |
| December)             | E. Apr     |       |         | -6.2  | 2.12" | -5.8 | 2.76" | -5.7     | -5.9 |
| ,                     | L. Apr     |       | 0.37"   | -12.2 | 2.95" | -7.3 | 3.84" | -7.8     | -6.1 |
|                       | Jan        | 0.07" |         | -4.6  |       | -4.7 |       | -4.7     | -5.3 |
| 2012                  | Feb        | 0.32" | 0.33"   | -5.0  | 1.84" | -4.1 | 2.00" | -4.8     | -5.5 |
| (DRY<br>Draviaua      | Mar        | 1.57" |         | -5.8  | 1.92" | -5.5 |       | -5.3     | -5.7 |
| Previous<br>December) | E. Apr     | 0.03" |         | -6.4  | 1.55" | -4.7 | 2.02" | -4.7     | -5.7 |
| ,                     | L. Apr     | 1.06" | 1.87"   | -6.5  | 2.87" | -4.8 | 3.33" | -4.7     | -6.2 |

(Saa Silva et al, unpublished)

### 2 & 3) Wasting water & deep moisture?

# 1 year almond drought study, 2009

| ,          | Wate | r from | 1       |
|------------|------|--------|---------|
| Irrigation | Rain | Soil   | Total   |
| 0"         | 2.1" | 5.5"   | 7.6"    |
| 3.6"       | 2.1" | 6.7"   | 12.4"   |
| 7.2"       | 2.1" | 5.9"   | 15.2"   |
| 30.8"      | 2.1" | (?)    | (32.9") |

A small amount of irrigation (3.6") spread evenly over the season resulted in **more use** of deep water than did **no irrigation**.





### **Bottom line - conclusions**



- Control weeds and irrigate at a proportion of 'normal' (best is full ETc) throughout the season.
- 2) Under deficit irrigation, expect to see differences due to soils.
- 3) Use the pressure chamber to determine when to start irrigating (tentative: wait for at or below baseline values before starting) and for 'early warning' from soils which will present a significant problem later on.
- 4) Mild to moderate stress at the start of hull split may happen by itself.





## Drought

What it means to the tree, and how best to deal with it

Thanks for your support, and see you at the posters!





### Almond Irrigation Management in a Drought Year– System & Site Considerations

Almond Board of CA Workshop 12/3 & 5/2013 Sacramento, CA

Blake Sanden – Irrigation Advisor, Kern County http://cekern.ucdavis.edu/Irrigation\_Management/



### Where do I start?

1. Pray for miracles. We need all the help we can get!

2. Get all the information you can! (That's why you're here.)

3. Get down on your knees (Similar to Step 1, but now this is work.) so you can check the soil profile, emitter flowrates, adjust pressure regulators and optimize uniformity!





### Quick review of current findings on almond ET and yield impacts in Kern County





# Why was the Westside deficit proportionately less than the Eastside?

The fine-textured sandy clay loam on the Westside had a larger soil moisture reserve that the 48" treatment could draw on that resulted in a very small difference (except for harvest cutoff) in plant stress stem water potential (SWP).



**Maximum Irrigation Efficiency** 

4 Points: Getting it in Getting it uniform Getting the right timing Getting the right amount

### Check your dirt! It has more secrets than the CIA.





# How to do it

-SOIL PROFILE BACKHOE PITS -BACKHOE PITS -SHOVEL -SHOVEL -SHOVEL -GEOLOGIST HANINER/PICK -SAEASURING TAPF -SMEASURING TAPF -CLIPBOARD -BUCKETS/BAG

# How to do it -SOIL TEXTURE

Making a soil "ribbon" test from a moistened ball. Sandy Clay Loam -Westside Kern County



# Creating the efficient field water balance – your soil moisture checking account!





# **Essential?** is just the basics, right? So can flood irrigation with 8 inch alfalfa valves @ 200 gpm be optimal?

Stre

A SHARE A SALE AS MUL

# What about 18 inch valves @ 2000 gpm?

Micro-irrigation system capable of injecting fertilizer and applying 0.6 to 1.5 inches/day







How do I calculate total available water with microsprinklers @ 1.5 in/day...

## Irrigation evaluation for application patterns & rootzone subbing 4/23/09

### Bowsmith A-40 microsprinkler

### Interpolated pattern of applied water from 2 Fanjets/tree



### Summed 0-6 ft water content 6/24/09 after 24 hour irrigation



# ... or account for "subbing" in a detableline drip?





#### DRIP HOSE



### Estimating Water Holding Capacity & Microirrigation Set Times for Orchards

| Refill Times f      | ent Soil                      | <sup>1</sup> Irria                | ation Tim                             | e to Refil                                     | l & Moisti                             | ire Rese                           | rve of                                 |                                    |  |  |  |  |
|---------------------|-------------------------------|-----------------------------------|---------------------------------------|------------------------------------------------|----------------------------------------|------------------------------------|----------------------------------------|------------------------------------|--|--|--|--|
| Textures and        | Micro S                       | ystems                            | 4 Foot                                | 4 Foot Wetted Rootzone @ 50% to 100% Available |                                        |                                    |                                        |                                    |  |  |  |  |
|                     |                               | Avg Drip<br>Subbing               | L<br>Dble-Line                        | Dble-Line ALMONDS 0.28 inch/d                  |                                        |                                    |                                        |                                    |  |  |  |  |
|                     | Available<br>Soil<br>Moisture | Diameter<br>from 1 to<br>4' Depth | <b>Drip 1-</b><br>gph, 10<br>per tree | Moisture<br>Reserve @<br>0.28"/day             | <b>10 gph</b><br>Fanjet, 1<br>per tree | Moisture<br>Reserve @<br>0.28"/day | <b>14 gph</b><br>Fanjet, 1<br>per tree | Moisture<br>Reserve @<br>0.28"/day |  |  |  |  |
| <u>Soil Texture</u> | (in/ft)                       | (ft)                              | (irrig hrs)                           | (days)                                         | (irrig hrs)                            | (days)                             | (irrig hrs)                            | (days)                             |  |  |  |  |
| Sand                | 0.7                           | 2                                 | 2.2                                   | 0.3                                            | 11.6                                   | 1.6                                | 12.5                                   | 2.4                                |  |  |  |  |
| Loamy Sand          | 1.1                           | 3                                 | 7.8                                   | 1.0                                            | 19.6                                   | 2.7                                | 20.9                                   | 4.0                                |  |  |  |  |
| Sandy Loam          | 1.4                           | 4                                 | 17.5                                  | 2.4                                            | 26.9                                   | 3.6                                | 28.3                                   | 5.4                                |  |  |  |  |
| Loam                | 1.8                           | 5                                 | 35.9                                  | 4.9                                            | 37.1                                   | 5.0                                | 38.6                                   | 7.3                                |  |  |  |  |
| Silt Loam           | 1.8                           | 6                                 | 43.1                                  | 5.8                                            | 39.7                                   | 5.4                                | 40.8                                   | 7.7                                |  |  |  |  |
| Sandy Clay Loam     | 1.3                           | 6                                 | 31.1                                  | 4.2                                            | 28.6                                   | 3.9                                | 29.5                                   | 5.6                                |  |  |  |  |
| Sandy Clay          | 1.6                           | 7                                 | 44.7                                  | 6.0                                            | 37.6                                   | 5.1                                | 38.3                                   | 7.2                                |  |  |  |  |
| Clay Loam           | 1.7                           | 8                                 | 54.3                                  | 7.3                                            | 42.6                                   | 5.8                                | 42.9                                   | 8.1                                |  |  |  |  |
| Silty Clay Loam     | 1.9                           | 9                                 | 68.2                                  | 9.2                                            | 50.6                                   | 6.8                                | 50.5                                   | 9.6                                |  |  |  |  |
| Silty Clay          | 2.4                           | 9                                 | 86.2                                  | 11.6                                           | 64.0                                   | 8.6                                | 63.8                                   | 12.1                               |  |  |  |  |
| Clay                | 2.2                           | 10                                | 87.8                                  | 11.9                                           | 62.3                                   | 8.4                                | 61.5                                   | 11.6                               |  |  |  |  |

<sup>1</sup>Based on a tree spacing of 20 x 22'. Drip hoses 6' apart. 10 gph fanjet wets 12' diameter. 14 gph fanjet @ 15' diameter. Note: Peak water use @ 0.28"/day and 20 x 22' spacing = 74 gallons/day/tree. 0.20"/day = 55 gallons/day/tree.

Table takes into account merging water patterns below soil surface for drip irrigation.
# Irrigation uniformity...

# Has a big impact on water use and yield. Measure your distribution uniformity and improve it!

Irrigation distribution uniformity (DU) in surface irrigation is determined by soil infiltration rate, flow down the check and set duration.





# At best poor scheduling/water penetration creates conditions for mites to come in...

At worst, individual leaves show marginal burn and can lead to severe defoliation

# "Head" end of same rows – more on time, more leaching



# DU in micro systems is determined by emitter flow variation across the orchard.

#### Catch water

Causes of micro irrigation non-uniformity: algae, slime, debris plugging hose screens and/or emitters

Trash from pipe break after repair and system restart

Thin coating of algae. No system chlorination. Causes of micro irrigation non-uniformity: chemical precipitates clogging drippers or altering flow rates. Check fertilizer mixes, gypsum injection, maybe use acid.



Microsprinklers may show precipitation but rarely lose flow.



Causes of micro irrigation non-uniformity: Use of non-pressure-compensating emitters in orchards with rolling topography

| 2 0                                                            |                           | the second secon |
|----------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Irrigation -47.7 in<br>Avg SWP -13.5 bars<br>Trnk Diam 79.3 cm | Causes of micro           | Irrigation 49.5 in<br>Avg SWP -13.4 bars<br>Trnk Diam 77.8 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.W<br>X                                                       | irrigation non-           | 뚔                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Irrigation 45.6 in<br>Avg SWP -13.4 bars<br>Trnk Diam 75.3 cm  | Poorly                    | Irrigation 48.4 in<br>Avg SWP -12.9 bars<br>Trnk Diam 76.7cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2W                                                             | adjusted or<br>maintained | 2E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Irrigation 49.5 in<br>Avg SWP -15.5bars<br>Trnk Diam 80.2 cm   | pressure<br>regulators    | Irrigation 54.2 in<br>Avg SWP -11.0 bars<br>Trnk Diam 77.5cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3₩<br>X                                                        |                           | 3E<br>☆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Irrigation 50.1 in<br>Avg SWP -14.9bars<br>Trnk Diam 75.1cm    |                           | Irrigation 58.1 in<br>Avg SWP -11.2 bars<br>Trnk Diam 83.1 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>4₩</b>                                                      |                           | 4 <u></u> 문                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

THE OWNER WHEN THE PARTY OF THE

**Block 10-2** 08/27/2012 **Relatively small** pressure differentials in irrigation subunits (+/- 4 psi) produced different amounts of applied water, canopy cover and leaf retension by the end of August

PFC Ranch 3061



# Water and growth differences in a 7<sup>th</sup> leaf orchard.

Irrigation50.1 inAvg SWP-14.9barsTrunk Diam75.1cm

Irrigation 58.1 in Avg SWP -11.2 bars

83.1 cm

runk Diam



Real-time data transmission and analysis over the internet can be convenient and sometimes fustrating and confusing at the same time.

#### Field loggers that simply record data have to be downloaded but are much cheaper than web-based systems (Loggers used in Kern County irrigation projects)









#### **Soil Moisture Changes in Citrus Under Different Set Pressures**



#### Weekly "Checkbook" Irrigation Scheduling Using Excel (http://cekern.ucdavis.edu/Irrigation\_Management, click SSJV IRRIGATION CHECKBOOK SCHEDULER)

|                        | ALMOND                                | EXAM                           | PLE                         |                           | 52.3 IN              | CHES "                    | NORMAL                       | YEAR"                                | ET                                |                           |                                   |                                |                    |                                  |                       |
|------------------------|---------------------------------------|--------------------------------|-----------------------------|---------------------------|----------------------|---------------------------|------------------------------|--------------------------------------|-----------------------------------|---------------------------|-----------------------------------|--------------------------------|--------------------|----------------------------------|-----------------------|
| FIE<br>VIGOR<br>FACTOR | LD 12-2<br>SOIL TYPE:                 | FIELD<br>CAPACI<br>TY (in/ft): | REFILL<br>POINT<br>(in/ft): | ROOTING<br>DEPTH<br>(ft): | ROW<br>SPAC-<br>ING: | IRRIG.<br>System:         | NORMAL<br>RUN TIME<br>(hrs): | Rootzone<br>WETTED<br>VOLUME<br>(%): | Total<br>Avail @<br>100%<br>(in): | AREA/<br>TREE<br>(sq ft): | DESIGN<br>FLOW<br>(gph/<br>tree): | WET<br>AREA<br>APPLIC<br>(in): | NUMBER<br>of SETS: | TOTAL<br>AREA<br>APPLIC<br>(in): |                       |
| 105%                   | Milham/ Panoche<br>sandy clay loam    | 2.6                            | 0.9                         | 6                         | 21' x<br>24'         | 2, 10.7<br>gph<br>Fanjets | 24                           | 50%                                  | 10.2                              | 504                       | 21.4                              | 3.27                           | 3                  | 1.63                             | TOTAL ET<br>(inches)  |
|                        | Week Ending:                          | 7/7                            | 7/14                        | 7/21                      | 7/28                 | 8/4                       | 8/11                         | 8/18                                 | 8/25                              | 9/1                       | 9/8                               | 9/15                           | 9/22               | 9/29                             | for Quarter           |
|                        | "Normal Yr" ET:                       | 2.07                           | 2.07                        | 2.00                      | 1.99                 | 1.91                      | 1.89                         | 1.82                                 | 1.74                              | 1.66                      | 1.55                              | 1.45                           | 1.33               | 1.16                             | 22.65                 |
| Block                  | ET (in/week):                         | 2.18                           | 2.18                        | 2.10                      | 2.09                 | 2.01                      | 1.98                         | 1.91                                 | 1.83                              | 1.74                      | 1.63                              | 1.52                           | 1.39               | 1.22                             |                       |
| Run                    | Time to Refill for<br>Week (hrs):     | . 32.0                         | 32.0                        | 30.8                      | 30.7                 | 29.5                      | 29.1                         | 28.0                                 | 26.8                              | 25.6                      | 24.0                              | 22.3                           | 20.5               | 17.9                             | TOTAL Irrig<br>(in)   |
| Act                    | ual Run (hrs):                        | 24                             | 24                          | 24                        | 24                   | <b>48</b>                 | HARV                         | EST                                  | 48                                | 24                        | 24                                | HARVES                         | T 48               |                                  | 19.62                 |
| Cum                    | ulative Deficit or<br>Surplus (hrs):  | -8.0                           | -15.9                       | -14.2                     | -21.0                | -2.5                      | -29.1                        | -57.2                                | -23.7                             | -25.3                     | -29.9                             | -52.2                          | -17.4              | -35.3                            |                       |
| Estimat<br>Depletio    | ed Soil Moisture<br>n or Excess (in): | -1.09                          | -2.17                       | -1.94                     | -2.86                | -0.34                     | -3.97                        | -7.79                                | -3.23                             | -3.45                     | -4.07                             | -7.11                          | -2.37              | -4.81                            | Moisture<br>Depletion |
| Estimat                | ed Soil Moisture<br>(% available):    | 89%                            | 79%                         | 81%                       | 72%                  | 97%                       | 61%                          | 24%                                  | 68%                               | 66%                       | 60%                               | 30%                            | 77%                | 53%                              | -4.81                 |
| Actual                 | Soil Moisture<br>(% available):       |                                | 90%                         |                           |                      | 100%                      |                              | 40%                                  |                                   | 60%                       |                                   | 40%                            |                    |                                  |                       |

## Conclusions

-Get organized! -Put all your info together for each field

Week ET

1/13

1/20

1/27

2/3

3/3

3/10

3/17

3/24

3/31

4/14

4/21

4/28

5/5

5/12

5/19

5/26

6/2

6/9

6/16

6/23

6/30

7/7

7/14 7/21

7/28

8/11

8/18

8/25

9/1

9/8

9/15

9/22

9/29

10/6

12/1

8/4

477

2/10

-Excel spreadsheets, Ag Water, BIS, Roy, PureSense, Hortau, many others – go see the trade show!





## 2013 ABC Drought Workshop



#### Allan Fulton

UC Cooperative Extension Farm Advisor Tehama, Glenn, Colusa, and Shasta Counties







# Drought in the almond growing regions of the Sacramento Valley

- Greater reliance on groundwater to fill in for reductions in surface water
- In-basin surface water transfers
- In higher rainfall regions, winter soil water storage has potential to help cope with drought
- Irrigation management is still relevant to optimize use of groundwater and more expensive surface water
  - Optimize productivity and irrigation costs
  - Minimize drawdown of groundwater aquifers
  - Important to nutrient management





Irrigation system characteristics in the almond production regions of Sacramento Valley Irrigation methods used in 243,470 acres of tree crop production in northern Sacramento Valley (%), 2005-09.





DWR, Northern Region.









#### Status of Crop Evapotranspiration (ETc) Estimates for Almonds

#### Update of the Almond Crop Coefficients (Kc)





| DATE       | 1996 ALMOND<br>Kc | 2013 ALMOND Kc |  |  |
|------------|-------------------|----------------|--|--|
| Mar 1-15   | 0.57              | 0.53           |  |  |
| Mar 15-31  | 0.69              | 0.67           |  |  |
| Apr 1-15   | 0.81              | 0.75           |  |  |
| Apr 16-30  | 0.91              | 0.81           |  |  |
| May 1-15   | 0.95              | 0.88           |  |  |
| May 16-31  | 0.96              | 0.97           |  |  |
| June 1-15  | 0.96              | 1.02           |  |  |
| June 16-30 | 0.96              | 1.06           |  |  |
| July 1-15  | 0.96              | 1.10           |  |  |
| July 16-31 | 0.96              | 1.11           |  |  |
| Aug 1-15   | 0.95              | 1.11           |  |  |
| Aug 16-31  | 0.93              | 1.11           |  |  |
| Sept 1-15  | 0.84              | 1.10           |  |  |
| Sept 16-30 | 0.86              | 1.08           |  |  |
| Oct 1-15   | 0.68              | 1.03           |  |  |
| Oct 16-31  | 0.58              | 0.95           |  |  |
| Nov 1-15   | 0.53              | 0.85           |  |  |





#### Net Effect of New Almond Crop Coefficients (Kc)

- Traditionally average annual ETc for almonds estimated to be about 42 inches
- Today average annual ETc for almonds estimated to be at least 48 inches, perhaps as high as 54 inches or more
- Trending towards higher, more consistent production
- Lots of new questions surrounding sustainability
  - Tree acclimation and adaptability to drought
  - Too much tree vigor and shade
  - More diseases
  - Orchard longevity
  - Added pressure on water resources

#### Availability – Modern and Traditional Outlets

http://cetehama.ucanr.edu/Water \_\_Irrigation\_Program/Weekly\_Soil\_Moisture\_Loss\_Reports/



- ( + + U P Untitled - Message (HTML) Table Tools Message Insert Options Format Text Developer Design Layout Header Row First Column 1000 C ----------------Total Row Last Column ----00000 \_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ V Banded Rows | Banded Columns ----**Table Style Options Table Styles** To .... =\* Cc... Send Subject: WEEKLY SOIL MOISTURE LOSS IN INCHES (Estimated Evapotranspiration) 11/15/13 through 11/21/13 West of Sacramento River East of Sacramento River Past Week Accum'd NOAA Past Accum'd NOAA of Water Seasonal Forecasted Crop Week of Seasonal Forecasted Use Water Use Week of (Leafout Date) Water Water Week of Water Use Use Use Water Use 0.50 59.06 0.61 Pasture 0.37 49.49 0.51 0.52 57.65 0.63 Alfalfa 0.38 48.07 0.53 0.38 44.65 0.40 0.00 37 52 0.39 0.33 38.54 0.40 0.25 32.36 0.34 Citrus 0.30 0.52 0.00 46.00 0.00 Prunes (3/15) \* 0.00 38.17 0.00 0.14 44.47 0.00 Walnuts (4/1) \* 0.11 36.83 0.00 0.34 50.71 0.41 Urban Turf Grass 0.26 42.54 0.36 Accumulations started on March 1, 2013 or on the approximate leafout date for a specific orchard crop as indicated in parentheses. Criteria for beginning this report are based on the season's last significant rainfall event where the soil moisture profile is estimated to be near its highest level for the new season. \* Estimates are for orchard floor conditions where vegetation is managed by some combination of strip applications of herbicides, frequent mowing or tillage, and by mid and late season shading and water stress. Weekly estimates of soil moisture loss can be as much as 25 percent higher in orchards where cover crops are planted and managed more intensively for maximum growth."

| 0.95 | Past Seven days Precipitation (Inches) | 1.06 |  |
|------|----------------------------------------|------|--|
| 3.69 | Accum'd Precip (Inches)                | 7.45 |  |

| 50% | <u>60%</u> | <u>70%</u> | 80% | 90% | Efficiency    | <u>50%</u> | 60% | 70% | 80% | 90% |
|-----|------------|------------|-----|-----|---------------|------------|-----|-----|-----|-----|
| 0.8 | 0.6        | 0.5        | 0.5 | 0.4 | Olivee        | 0.6        | 0.5 | 0.4 | 0.4 | 0.3 |
| 0.7 | 0.6        | 0.5        | 0.4 | 0.4 | Citrus        | 0.5        | 0.4 | 0.4 | 0.3 | 0.3 |
| 0.0 | 0.0        | 1.0        | 0.1 | 0.4 | Almonde (2/4) | 0.5        | 0.1 | 0.0 |     | V.J |
| 0.0 | 0.0        | 0.0        | 0.0 | 0.0 | Prunes (3/15) | 0.0        | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.3 | 0.2        | 0.2        | 0.2 | 0.2 | Walnuts (4/1) | 0.2        | 0.2 | 0.2 | 0.1 | 0.1 |

<sup>1</sup>The amount of water required by a specific irrigation system to satisfy evapotranspiration. Typical ranges in irrigation system efficiency are: Drip Irrigation, 80%-95%; Micro-sprinkler, 80%-90%; Sprinkler, 70%-85%; and Border-furrow, 50%-75%.

Saturday, July 30, 2011 - Daily News 5A

| • • | WEEKLY SOIL MOISTURE LOSS IN INCHES<br>(Estimated Evapotranspiration)<br>07/22/11 through 07/28/11                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                 |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                                                                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|     | West                                                                                                                              | of S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | acrar                                                                                                                        | nento                                                                                                                           | Rive                                                                                                                           | ar .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | East                                                                                                                                                                | of Sad                                                                                                                                    | cram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ento I                                                                                                                  | River                                                               |
|     | Weel                                                                                                                              | kly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Acc                                                                                                                          | um'd                                                                                                                            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     | We                                                                                                                                        | ekły                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acc                                                                                                                     | um'd                                                                |
|     | , Wate                                                                                                                            | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Seas                                                                                                                         | sonal                                                                                                                           |                                                                                                                                | Crop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     | Wa                                                                                                                                        | ater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sea                                                                                                                     | sonal                                                               |
|     | Use                                                                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                                                                                                            | se                                                                                                                              |                                                                                                                                | (Leafout Date)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                     | U                                                                                                                                         | se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                                       | se                                                                  |
|     | 1.84                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                           | .60                                                                                                                             |                                                                                                                                | Pasture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     | 1.                                                                                                                                        | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                                                                                      | .93                                                                 |
|     | 1.7                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                                                                           | .71                                                                                                                             |                                                                                                                                | Alfalfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     | 1.                                                                                                                                        | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                                                                                      | .05                                                                 |
|     | 1.38                                                                                                                              | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                           | .10                                                                                                                             |                                                                                                                                | Olives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                     | 1.                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18                                                                                                                      | .08                                                                 |
|     | 1.2                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                           | .33                                                                                                                             |                                                                                                                                | Citrus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                     | 1.                                                                                                                                        | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                                                                                      | .54                                                                 |
|     | 1.7.                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04                                                                                                                           | 96                                                                                                                              |                                                                                                                                | Almondo (2/1) t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                      | .26                                                                 |
|     | 1.73                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                                                                                           | .83                                                                                                                             |                                                                                                                                | Prunes (3/15) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     | 1.                                                                                                                                        | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                                      | .24                                                                 |
|     |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |                                                                                                                                 |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                                                                     |
|     | 2.12                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                           | .73                                                                                                                             |                                                                                                                                | Walnuts (4/1) * .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                     | 1.                                                                                                                                        | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 19                                                                                                                    | .24                                                                 |
|     | 2.12<br>1.72<br>Accumul                                                                                                           | 2<br>lation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.<br>25.<br>s start                                                                                                        | .73<br>.06<br>ed on M                                                                                                           | March 2                                                                                                                        | Walnuts (4/1) *<br>Urban Turf Grass<br>27, 2011. Criteria for begi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ning th                                                                                                                                                             | 1.<br>1.<br>nis repo                                                                                                                      | 82<br>54<br>Intare t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 19<br>. 22                                                                                                            | .24<br>.68<br>on the                                                |
|     | 2.12<br>1.72<br>Accumul<br>season's<br>* Estima<br>combina<br>season v<br>higher in                                               | 2<br>lation<br>s last<br>ites a<br>ition of<br>water<br>orch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.<br>25.<br>signific<br>re for c<br>of strip<br>stress<br>ands w                                                           | .73<br>.06<br>cant rai<br>orchard<br>applics<br>. Wee<br>there o                                                                | March 2<br>Infall ev<br>floor c<br>ations o<br>kly esti<br>over cr                                                             | Walnuts (4/1) *<br>Urban Turf Grass<br>27, 2011. Criteria for begin<br>rent where the soil moistur<br>onditions where vegetatio<br>herbicides, frequent mo-<br>mates of soil moisture loss<br>ops are planted and mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aning the<br>re profil<br>n is ma<br>wing or<br>s can b<br>ged for                                                                                                  | 1.<br>1.<br>tis repo<br>e is at i<br>naged<br>tillage,<br>e as me<br>maxim                                                                | 82<br>54<br>full cap<br>by son<br>and by<br>uch as<br>sum go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 19<br>. 22<br>based o<br>acity.<br>te<br>/ mid a<br>25 per<br>owth.*                                                  | .24<br>.68<br>on the<br>nd late<br>cent                             |
|     | 2.12<br>1.72<br>Accumul<br>season's<br>* Estima<br>combina<br>season y<br>higher in                                               | 2<br>lation<br>s last<br>ites a<br>tion of<br>water<br>orch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.<br>25.<br>s starte<br>signific<br>re for c<br>of strip<br>stress<br>hards w                                              | .73<br>.06<br>ed on N<br>cant rai<br>prohard<br>applice<br>. Wee<br>there o                                                     | March 2<br>nfall ev<br>i floor c<br>ations c<br>kly esti<br>over cri<br>F                                                      | Walnuts (4/1) * .<br>Urban Turf Grass<br>27, 2011. Criteria for begin<br>vent where the soil moistur<br>onditions where vegetatio<br>of herbicides, frequent mom<br>mates of soil moisture loss<br>ops are planted and mana<br>Precipitation (Inchest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aning tr<br>re profil<br>n is ma<br>ving or<br>s can b<br>ged for<br>s)                                                                                             | 1.<br>iis repo<br>e is at<br>naged<br>lillage,<br>e as mo<br>maxim                                                                        | 82<br>54<br>full cap<br>by son<br>and by<br>wch as<br>wm gn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 19<br>. 22<br>based o<br>acity.<br>ie<br>/ mid a<br>25 per<br>owth.*                                                  | .24<br>.68<br>on the<br>nd late<br>cent                             |
|     | 2.12<br>1.72<br>Accumul<br>season's<br>* Estima<br>combina<br>season o<br>higher in                                               | 2<br>lation<br>s last<br>tes a<br>tion o<br>water<br>orch<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.<br>25.<br>s start<br>signific<br>re for c<br>of strip<br>stress<br>hards w<br>00<br>77                                   | .73<br>.06<br>ed on N<br>cant rai<br>prohard<br>applics<br>. Wee<br>/here o                                                     | March 2<br>infall ev<br>ificor c<br>ations c<br>kly esti<br>over cr<br>F<br>• Ac                                               | Walnuts (4/1) * .<br>Urban Turf Grass<br>27, 2011. Criteria for begin<br>vent where the soil moistur<br>onditions where vegetatio<br>I herbicides, frequent mom<br>mates of soil moisture los:<br>ops are planted and mana<br>Precipitation (Inchest<br>cum'd Precip (Inchest)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aning the profil<br>in is ma<br>wing or<br>s can b<br>ged for<br>s)<br>es)                                                                                          | 1.<br>1.<br>iis repo<br>le is at i<br>naged<br>tillage,<br>e as mo<br>maxim                                                               | 82<br>54<br>full cap<br>by som<br>and by<br>som<br>and and and and and and and and and and | . 19<br>. 22<br>based o<br>acity.<br>ie<br>/ mid a<br>25 per<br>owth.*<br>00<br>40                                      | .24<br>.68<br>on the<br>nd late<br>cent                             |
| -   | 2.12<br>1.72<br>Accumu<br>season's<br>* Estima<br>combina<br>season y<br>higher in                                                | 2<br>lation<br>s last<br>ties a<br>tion of<br>water<br>orch<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21.<br>25.<br>signific<br>refore<br>of strip<br>stress<br>hards w<br>00<br>77                                                | .73<br>.06<br>ed on N<br>cant rai<br>prchard<br>applics<br>. Wee<br>there o                                                     | March 2<br>nfall ev<br>floor c<br>ations c<br>kly esti<br>over cr<br>F<br>• Ac                                                 | Walnuts (4/1) * .<br>Urban Turf Grass<br>27, 2011. Criteria for begin<br>where the soil moistur<br>onditions where vegetation<br>of herbicides, frequent moments<br>mates of soil moisture loss<br>ops are planted and mana<br>Precipitation (Inchest<br>cum'd Precip (Inchest)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | aning the<br>reprofil<br>n is ma<br>wing or<br>s can b<br>ged for<br>s)<br>es)                                                                                      | 1.<br>1.<br>1.<br>is repo<br>le is at in<br>naged<br>tillage,<br>e as mo<br>maxim                                                         | 82<br>54<br>full cap<br>by som<br>and by<br>uch as<br>tum gn<br>0.<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19<br>22<br>based of<br>acity.<br>39<br>7 mid a<br>25 per<br>owth.*<br>00<br>40                                         | .24<br>.68<br>on the<br>nd late<br>cent                             |
|     | 2.12<br>1.72<br>Accumul<br>season's<br>* Estima<br>combina<br>season<br>higher in                                                 | 2<br>lation<br>s last<br>ites a<br>tion o<br>water<br>orch<br>0.0<br>4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.<br>25.<br>s start<br>signific<br>re for o<br>of strip<br>stress<br>hards w<br>00<br>77                                   | .73<br>.06<br>ed on P<br>cant rais<br>orchard<br>applics<br>. Wee<br>there o                                                    | March 2<br>Infall ex<br>floor c<br>ations o<br>kly esti<br>over cr<br>F<br>AC<br>KLY<br>90%                                    | Walnuts (4/1) * .<br>Urban Turf Grass<br>27, 2011. Criteria for begin<br>where the soil moistur<br>onditions where vegetation<br>of herbicides, frequent moments<br>ops are planted and mana<br>Precipitation (Inchest<br>cum'd Precip (Inchest<br>Cum'd Precip (Inchest<br>Cum'd Precip (Inchest)<br>Cum'd Precip (Inchest) | aning the profile<br>the profile<br>s can b<br>ged for<br>s)<br>es)<br>t INC                                                                                        | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.                                                                                  | 82<br>54<br>full call<br>by som<br>and by<br>som and by<br>som gri<br>0.<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 19<br>. 22<br>based o<br>acity.<br>ie<br>/ mid a<br>25 per<br>owth.*<br>00<br>40                                      | .24<br>.68<br>on the<br>nd late<br>cent                             |
| -   | 2.12<br>1.72<br>Accumuls<br>season's<br>* Estima<br>combina<br>season higher in<br>higher in                                      | 2<br>lation<br>s last<br>ites a<br>tion of<br>water<br>orch<br>0.0<br>4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.<br>25.<br>s start<br>signific<br>re for o<br>of strip<br>stress<br>hards w<br>00<br>77                                   | .73<br>.06<br>ed on N<br>cant rais<br>rehard<br>applica<br>. Wee<br>there o                                                     | March 2<br>nfall ev<br>floor c<br>ations o<br>kly esti<br>over cr<br>F<br>Ac<br>KLY<br><u>90%</u><br>1.5                       | Walnuts (4/1) * .<br>Urban Turf Grass<br>27, 2011. Criteria for begin<br>where the soil moistu<br>onditions where vegetation<br>of herbicides, frequent moments<br>ops are planted and mana<br>Precipitation (Inchest<br>cum'd Precip (Inchest<br>Cum'd Precip (Inchest<br>Cum'd Precip (Inchest<br>Cum'd Precip (Inchest)<br>Cum Cum Cum Cum Cum Cum Cum Cum<br>Cum Cum Cum Cum Cum Cum Cum Cum<br>Cum Cum Cum Cum Cum Cum Cum Cum<br>Cum Cum Cum Cum Cum Cum Cum Cum Cum Cum<br>Cum Cum Cum Cum Cum Cum Cum Cum Cum Cum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | aning the profil<br>in is ma<br>wing or<br>s can b<br>ged for<br>s)<br>es)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s             | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.                                                                                  | 82<br>54<br>full cap<br>by som<br>and by<br>som<br>and by<br>som<br>0.<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 19<br>. 22<br>based o<br>acity.<br>                                                                                   | .24<br>.68<br>on the<br>nd late<br>cent                             |
|     | 2.12<br>1.72<br>Accumul<br>season's<br>* Estima<br>combina<br>season higher in<br>higher in                                       | 2<br>katior<br>s last<br>ites a<br>tion c<br>water<br>0.0<br>4.3<br>2.3<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.<br>25.<br>s starts<br>signific<br>refore<br>of strip<br>stress<br>nards w<br>00<br>77                                    | .73<br>.06<br>ed on N<br>cant rai<br>prohard<br>applica<br>.Wee<br>there o                                                      | March 2<br>Infall ev<br>floor c<br>ations of<br>kly esti<br>over cr<br>F<br>Ac<br><u>SKLY</u><br><u>90%</u><br>1.5             | Walnuts (4/1) * .<br>Urban Turf Grass<br>27, 2011. Criteria for begin<br>when where the soil moistu<br>onditions where vegetation<br>of herbicides, frequent moments<br>ops are planted and mana<br>Precipitation (Inchest<br>cum'd Precip (Inchest<br>Cum'd Precip (Inchest<br>Cum'd Precip (Inchest<br>Cum'd Chest Cum'd Chest<br>Cum'd Chest Cum'd Chest<br>Cum'd Chest Cum'd Chest<br>Cum'd Chest Cum'd Cum'd Cum<br>Cum Cum Cum Cum<br>Cum Cum Cum Cum<br>Cum Cum Cum<br>Cum Cum Cum<br>Cum Cum<br>Cum Cum<br>Cum Cum<br>Cum Cum<br>Cum Cum<br>Cum Cum<br>Cum Cum<br>Cum Cum<br>Cum<br>Cum<br>Cum<br>Cum<br>Cum<br>Cum<br>Cum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aning the profil<br>n is ma<br>wing or<br>s can b<br>ged for<br>s)<br>es)<br>tINC<br>2.4                                                                            | 1.1<br>1.3<br>this repoole<br>le is at<br>naged<br>tillago,<br>e as maxim<br>maxim<br>HES <sup>1</sup><br><u>60%</u><br>2.0<br>1.9        | 82<br>54<br>full cap<br>by son<br>and by<br>ach as<br>bum gn<br>0.<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 19<br>. 22<br>based o<br>vacity.<br>98<br>/ mid a<br>25 per-<br>owth.*<br>00<br>40<br>40<br>1.5                       | .24<br>.68<br>on the<br>nd late<br>cent<br><u>90%</u><br>1.3        |
|     | 2.12<br>1.72<br>Accumul<br>season's<br>* Estima<br>combina<br>season higher in<br>higher in<br>2.8<br>2.8<br>2.4<br>2.4<br>2.5    | 2<br>station<br>ites a<br>ites a<br>it | 21.<br>25.<br>s starts<br>signific<br>refore<br>of strip<br>stress<br>hards w<br>00<br>77<br><u>70%</u><br>2.0<br>1.7<br>2.5 | .73<br>.06<br>ed on N<br>cant rai<br>prohard<br>applica<br>.Wee<br>there o<br><u>WEE</u><br><u>80%</u><br>1.7<br>1.5            | March 2<br>Infall en<br>floor c<br>ations of<br>kly esti<br>over cr<br>Ac<br><u>90%</u><br>1.5<br>1.3<br>2.0                   | Walnuts (4/1) * .<br>Urban Turf Grass<br>27, 2011. Criteria for begin<br>when where the soil moistur<br>onditions where vegetation<br>of herbicides, frequent mon-<br>mates of soil moisture loss<br>ops are planted and mana<br>Precipitation (Inches-<br>cum'd Precip (Inches-<br>cum'd Precip (Inches-<br><u>Clituss</u><br>Almonds (2/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | aning the profile<br>is profile<br>is ma<br>wing or<br>s can b<br>ged for<br>s)<br>es)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s)<br>s | 1.1<br>1.1<br>this repoole<br>is at in<br>naged<br>tillago,<br>e as mini-<br>maxim<br>HES <sup>1</sup><br><u>60%</u><br>2.0<br>1.8<br>2.6 | 82<br>54<br>full cap<br>by som<br>and by<br>and by<br>and by<br>and by<br>5.<br>5.<br><u>70%</u><br>1.7<br>1.5<br>2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 19<br>. 22<br>based o<br>acity.<br>                                                                                   | .24<br>.68<br>on the<br>nd late<br>cent<br><u>90%</u><br>1.3<br>1.2 |
|     | 2.12<br>1.72<br>Accumuls<br>*Estima<br>combina<br>season +<br>higher in<br>50% 6<br>2.8<br>2.8<br>2.4<br>2.4<br>2.5<br>3.5<br>3.5 | 2<br>kation<br>s last<br>ites a<br>tion «<br>water<br>0.(<br>4.)<br>30%<br>2.3<br>2.0<br>3.0<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.<br>25.<br>s start<br>signific<br>refore<br>stress<br>hards w<br>00<br>77<br><u>70%</u><br>2.0<br>1.7<br>2.5              | .73<br>.06<br>ed on N<br>cant rais<br>prohard<br>applics.<br>. Wee<br>there of<br><u>WEE</u><br><u>80%</u><br>1.7<br>1.5<br>2.2 | March 2<br>Infall en<br>floor o<br>ations o<br>kly esti<br>over on<br>F<br>Ac<br><u>KLY</u><br><u>90%</u><br>1.5<br>1.3<br>2.0 | Walnuts (4/1) * .<br>Urban Turf Grass<br>27, 2011. Criteria for begin<br>rent where the soil moistur<br>onditions where vegetation<br>of herbicides, frequent mon-<br>mates of soil moisture los-<br>ops are planted and mana<br>Precipitation (Inches-<br>cum'd Precip (Inches-<br>Citrus<br>Almonds (3/1)<br>Pruges (2/15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | aning the profile<br>n is man<br>scan b<br>ged for<br>s)<br>es)<br><u>\$ INC</u><br>2.4<br>2.1<br>3.1                                                               | HES <sup>1</sup><br>60%<br>20<br>1.8<br>2.6<br>2.6                                                                                        | 82<br>54<br>full cap<br>by som<br>and by<br>ach as<br>tum gn<br>0.<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 19<br>. 22<br>based o<br>vacity.<br>%<br>/ mid a<br>25 per-<br>cowth.*<br>00<br>40<br><u>80%</u><br>1.5<br>1.3<br>1.9 | .24<br>.68<br>on the<br>nd late<br>cent<br>1.3<br>1.2<br>1.7        |

A griculturo

For further information concerning all counties receiving this report, contact the Tehama Co. Farm Advisor's office at (530) 527-3101.





#### Irrigation Scheduling Suggestions to Minimize the Impact of Drought on Productivity

What?

- Crop stress
- Soil moisture conditions

#### How?

- Allocate irrigation water in proportion to ETc
- Use crop stress and soil moisture indicators







# In higher rainfall almond production regions, soil storage contribution may be more than anticipated



#### Seasonal almond (ETc) <u>does not</u> necessarily equal irrigation requirement

#### Sources of water:

- Winter rainfall storage contribution
- In-season, effective rainfall
- Irrigation







Invest in knowledge, capacity, and flexibility to schedule irrigations in orchard blocks differently



Field Scale







## **Regulated Deficit Irrigation**

- Goal to minimize impact of water shortage on productivity
- Withhold water to the extent that it reduces ETc to some degree
- Withhold at the least sensitive crop stage and regulate level of crop stress allowed

#### Regulated Deficit Irrigation (RDI) during hull split.

California Agriculture 65(2):90-95. DOI: 10.3733/ca.v065n02p90. April-June 2011.

## Growing Advantage"

TABLE 2. Consumptive water use and overall percentage savings, 2005–2008

| Year     | Treatment          | Consumptive use | Savings |
|----------|--------------------|-----------------|---------|
|          |                    | inches (cm)     | %       |
| 2005     | RDI*               | 34.6 (87.9)     | 15      |
|          | Control            | 40.2 (102.1)    |         |
| 2006     | RDI                | 36.0 (91.4)     | 13      |
|          | Control            | 41.6 (105.7)    |         |
| 2007     | RDI                | 47.1 (119.6)    | 10      |
|          | Control            | 52.3 (132.8)    |         |
| 2008     | RDI                | 42.6 (108.2)    | 13      |
|          | Control            | 48.7 (123.7)    |         |
| * Regula | ted deficit irriga | ition.          |         |



Fig. 1. Annual pattern of nutmeat yield, 2004–2008. Error bars are ± 2 SE.

#### **2012 Survey of Almond Growers**

 Turning to more science-based information to manage irrigation

- 53 % Use flow meters
- 43 % Irrigation uniformity
- 44 % Water budget (ETc) lacksquare
- 49 % Soil moisture monitoring
- 28 % Pressure Chamber, Midday SWP
- 550 Irrigation system performance evaluations in northern Sac Valley (30,000 acres)









Wrap Up: Applying Drought Strategies to the Orchard

David Doll UCCE Merced



#### **Irrigation Considerations**





Practices
### **Determining Water Needs**





#### Canopy coverage dictates water needs.

# Applying the Water



#### 2 Strategies:

#### 0-15% reduction:

RDI applied during June/Hullsplit period



Fig. 1. Annual pattern of nutmeat yield, 2004–2008. Error bars are ± 2 SE.

#### 16% or greater reduction:

Apply available water at the percentage of available ETc evenly through the season



### Applying the Water: Strategies Explained





## Applying the Water: Strategies Explained





Month

## "Drought" Scenario - 2009





# What He Did: Chemically Mowed





#### Resident or planted groundcover uses water!

Ground cover will use any stored soil moisture

Trade off with soil compaction



## What He Did: Improved DU





Most systems start declining in performance after the first few years

Lack of annual maintenance

A 70% DU takes 22% more water to adequately irrigate than 90% DU

Reduced Field variability, "hotspots"

Guidelines for DU Testing: <u>http://micromaintain.ucanr.edu/</u>

## What He Did: Changed Irrigation Timing





Exposed soil surfaces, wind, and high temperatures increase evaporative losses.



#### Growth and Yield will be Impacted:

- •Reduction of kernel weights from current seasons deficit
- •Reduction of growth and bud development reduces next year's crop
- •Results will be compounded if deficit is continued into a second (or third year)
- •Yields will take two years at full irrigation to recover.