

Alternatives for Managing Replant Pests and Problematic Weeds

Anaerobic Soil Disinfestation for Almond Replant: Components, Process, Responses, & Outlook

Greg Browne, USDA-ARS, UC Davis

N.J. Ott, A.R. Khan, M. Yaghmour, P. Gordon, B. Holtz, A. Westphal, and G. Brar

Acknowledgements:

- Almond Board of California
 California DPR
- TriCal, Inc.
 KARE and CSUF Staff
 Wonderful Orchards

Components: substrate

Ground carbon source	Estimated \$ / ton	Rate Tons / trt. ac.	Estimated material \$ / ac for "50% strips"		
Mustard seed meal	\$1,700	3	\$2,550		
Rice bran	\$283	\$283 9 \$1,27			
Almond hull	\$192	9	\$864		
Tomato pomace	\$185	9	\$833		
Grape pomace	\$155	9	\$698		
Pistachio hull	\$150	9	\$675		
Olive pomace	\$115	9	\$518		
Almond hull/shell, "pollinator"	\$104	9	\$468		
Almond shell	\$80	9	\$360		

Perspectives on nutrients in alternative substrates

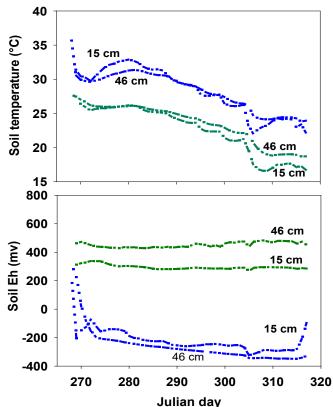
						N.F.		A.D.		N in 9 (or 65)	P in 9 (or 65)	K in 9 (or 65)
Substrate	Total C (%)	C:N ratio	N (%)	P (%)	K (%)	Carb. (%)	Starch (%)	Lignin (%)	рН	tons (lb)	tons (lb)	tons (Ib)
Mustard meal	45	7	6.1	0.81	0.8	22	2.9	1.4	5.1	1091	146	151
Rice bran	45	19	2.4	1.77	1.4	32	15.3	3.0	6.2	427	318	246
Tomato pomace	46	19	2.5	0.31	1.0	10	6.4	16.7	5.0	445	55	180
Grape pomace	45	24	1.9	0.23	1.5	35	0.44	12.4	4.1	340	41	270
Pistachio hull	50	28	1.8	0.08	1.1	17	0.94	20.6	5.3	324	14	198
Olive pomace	50	26	1.9	0.21	1.7	9	0.1	21.0	4.7	344	38	306
Almond hull and shell	41	60	0.9	0.10	2.1	43	0.4	6.7	4.8	156	19	372
Almond hull only	40	59	0.7	0.09	2.1	52	<0.01	4.1	4.9	122	16	378
Almond shell only	43	63	0.7	0.05	1.5	22	0.3	11.9	5.0	122	9	270
Whole orchard recycling chips	47	120.5	0.4	0.03	0.1	14	0.62	11.1	4.8	(507)	(39)	(156)

Process: spreading substrate

Process: substrate incorporation

Process: installing auxiliary irrigation system, tarp

Process: clean up, planting, assessment



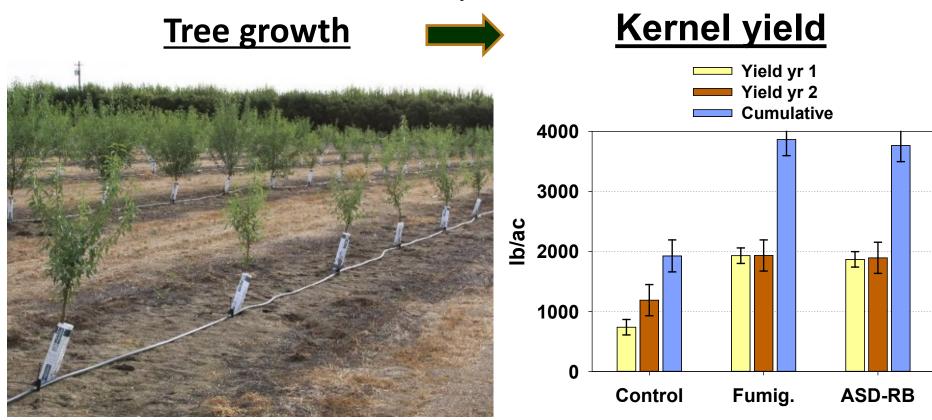
Responses: soil parameters

During ASD process:

- ASD with high bran rate, wide strip
- Control

During ASD process:

- Increase in soil temperature
- Decrease in redox potential
- Microbial community shifts
- Reduction of pest populations
- Gen. of organic acids, volatiles
- Reduction in soil pH



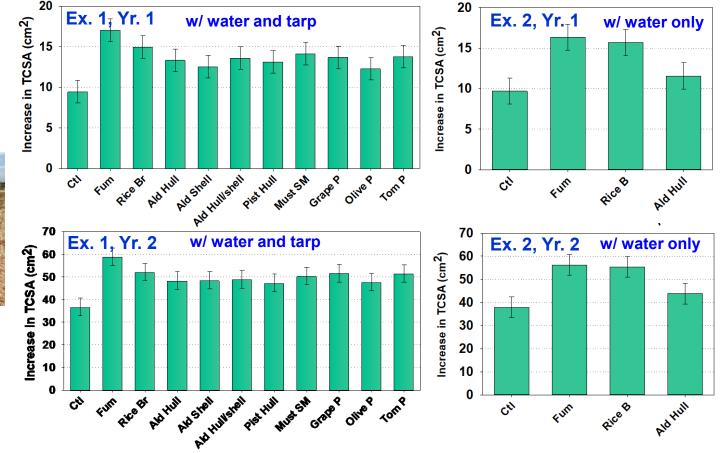
After ASD process:

- Microbial community shifts
- Some reduction in soil pH
- Reduced soil pest populations (weeds, pathogens)
- Increased levels of some nutrients (NPK)

Responses, orchards performance

KARE trials, planted 2014

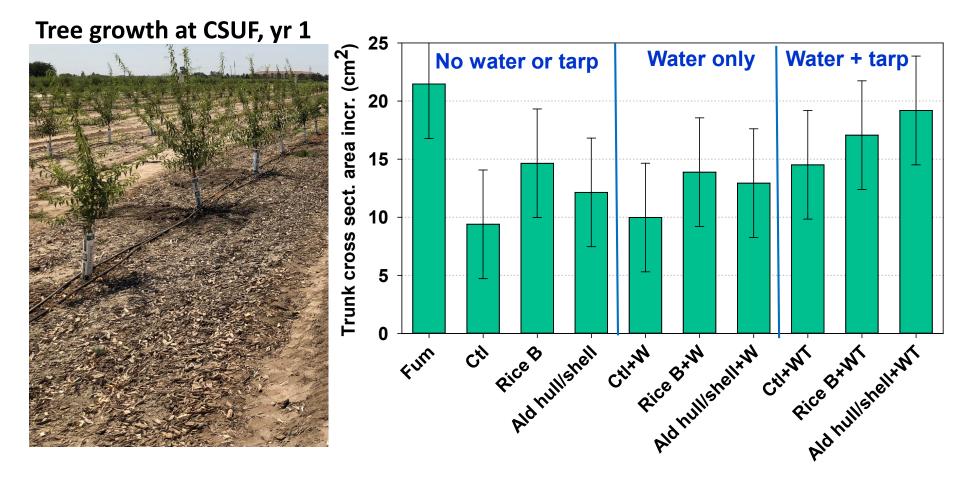
The cost challenge: \$ estimates, ASD vs. Fumigation


Material amounts and costs					Applica						
ASD Substrate	Rate (t/trt.ac)	Proportion land treated	t/orch. ac	Material (\$/t)	Freight (\$/t)	Total substrate cost (\$/orch ac)	Spreading @10\$/ton	Incorp.	Auxillary Irrigation system (6 tape lines/row)	TIF tarp (0.5 roll/ac)	Total cost (\$/orch ac)
Rice bran	9	0.5	4.5	283	20	1,364	45	20	200	400	2,029
Ground almond hull and shell	9	0.5	4.5	100	20	540	45	20	200	400	1,205

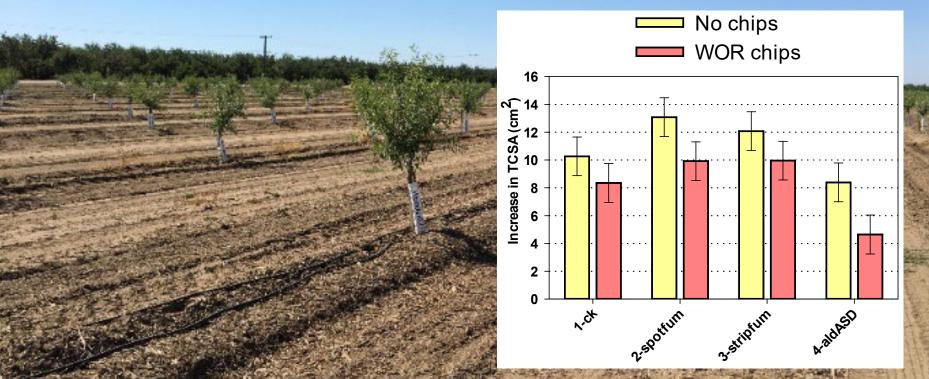
Fumigation Treatment	Total cost (\$/orchard acre)
Telone II broadcast + Cpic 0.38 strip	1,278
Telone II broadcast + Cpic 0.15 spot	1,190
Telone II strip + Cpic 0.15 spot	797
Cpic 0.5 strip	614

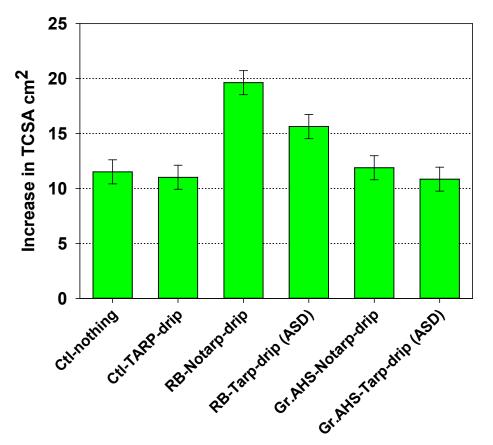
Responses: Alternative substrates can work

Tree growth, KARE trial, planted 2017

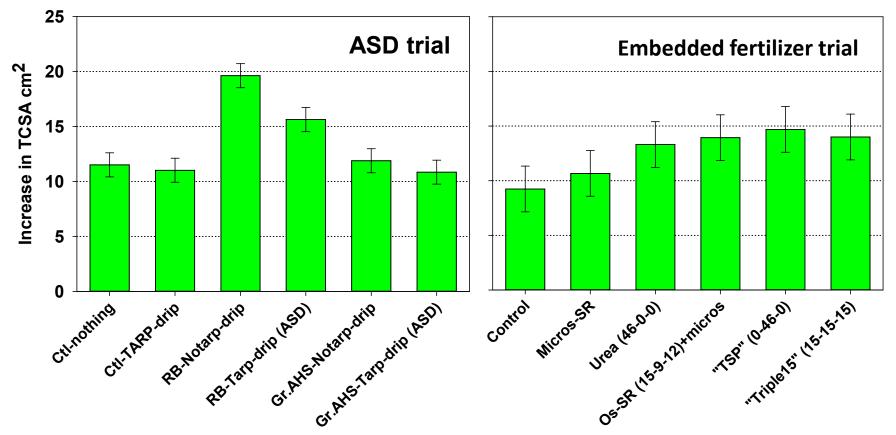


Responses: CSUF trials,


- More tests of alternative substrates, water, tarp.
- Tested with WOR chips
- Planted 2018


Responses to ground almond hull+shell vs. rice bran substrate

Negative growth impact of ASD based on ground almond hull and shell in one fumigation x WOR trial, Kern Co



Responses: to substrates, water and tarp; Chowchilla Trial, planted 2019

Responses: ASD / substrate trts. vs. postplant fertilizers Chowchilla, planted 2019

Thank you! gtbrowne@ucdavis.edu

Summary, Outlook

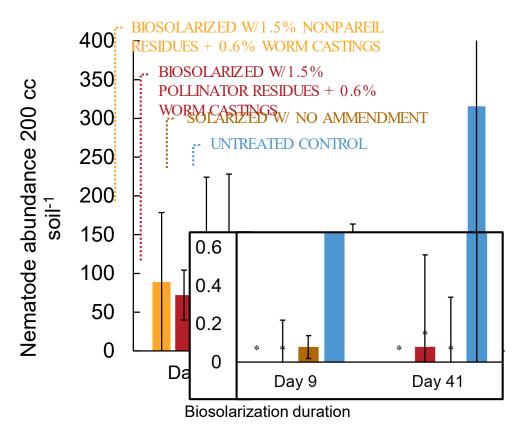
- ASD is a multicomponent process with complex chemical and biological impacts
- ASD approached/matched fumigation for PRD control, but at sig. higher cost; more time needed to assess nematode control
- There is good potential to reduce cost of ASD
- Ground almond hull / shell a less expensive substrate than rice bran; worked well, but less dependably than rice bran
- ASD work suggests further N and P studies
- ASD is worth a try in buffer areas that can not be fumigated; treat in summer

Soil and tree responses to biosolarization using almond residue amendments

Christopher Simmons, PhD

Department of Food Science and Technology University of California, Davis

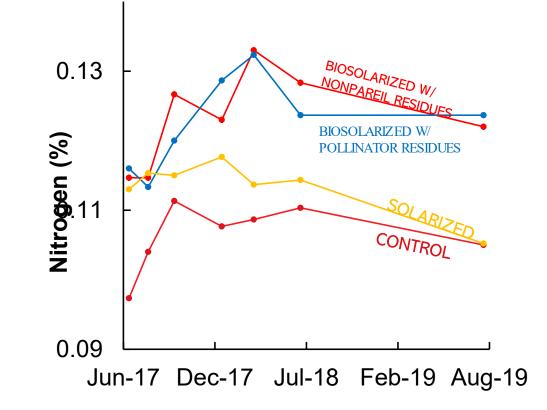
A biosolarization field trial was conducted at a pre-plant orchard site in summer of 2017.


The trial was done in collaboration with Rory Crowley and George Nicolaus of the Nicolaus Nut Company at one of their Chico sites.

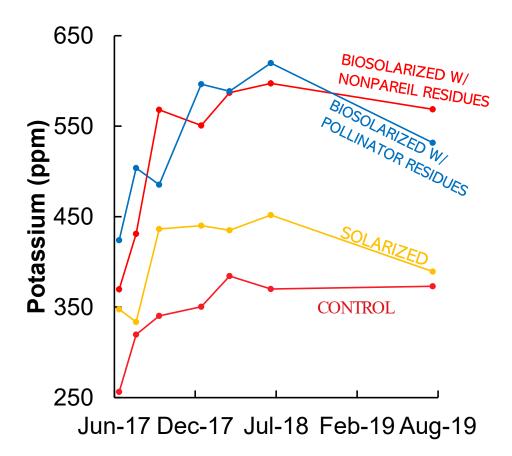
- NP = Nonpareil variety cultivated
- B = Bennett-Hickman variety cultivated
- M = Monterey variety cultivated

- Untreated (control)
- Biosolarized using nonpareil variety residues and worm castings Biosolarized using pollinator variety residues and worm castings
- Solarized without amendments

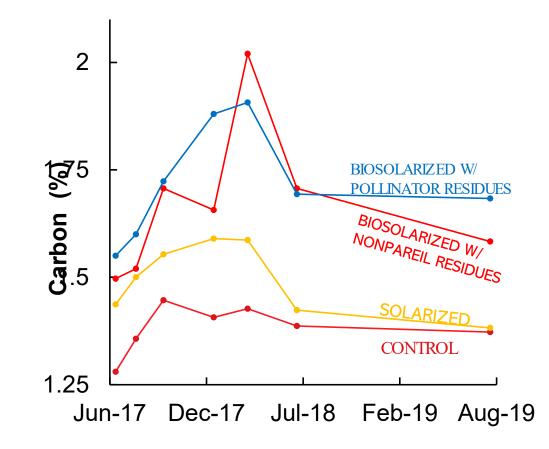
Root lesion nematode control


Root lesion nematode control observed within 9 days of biosolarization.

Soil nitrogen

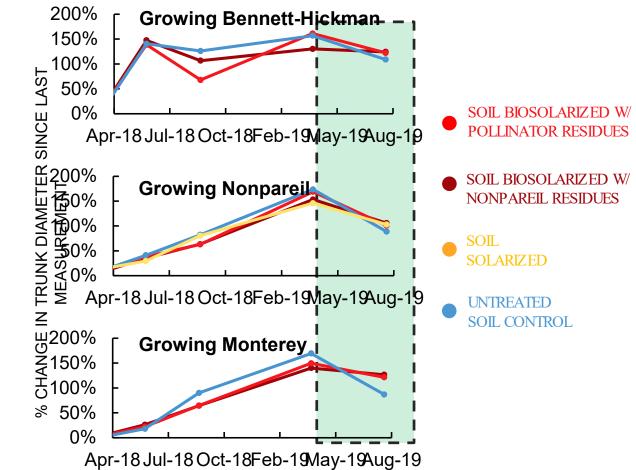

Nitrogen levels have been significantly elevated in both biosolarized treatments for almost 2 years.

Soil potassium


Potassium levels have been significantly elevated in both biosolarized treatments for almost 2 years.

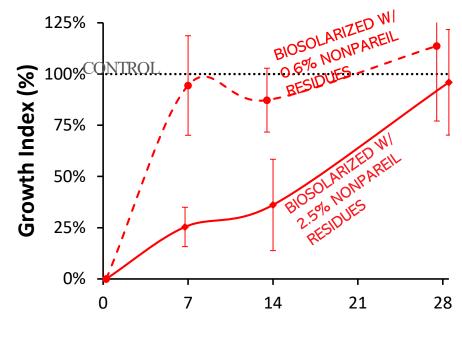
Soil carbon

Carbon levels have been significantly elevated in both biosolarized treatments for almost 2 years.



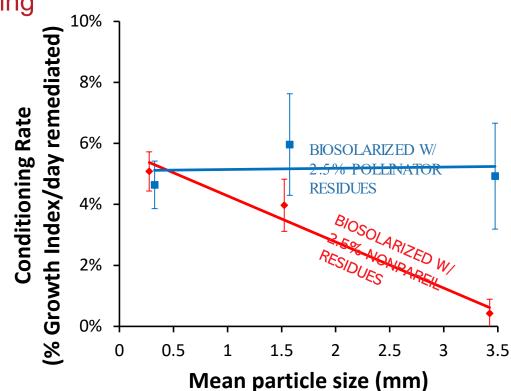
Tree growth

In the first year, trees in the biosolarized plots showed slower growth as they adapted to the soil


In their second year, trees in biosolarized plots showed increased growth rate compared to trees in untreated soil.

Soil conditioning ahead of planting

Conditioning time is proportional to quantity of biomass amended to soil.



Remediation Time (days)

Soil conditioning ahead of planting

Conditioning time depends on both the type of amendment used and its particle size.

Challenges and future work

More data is needed to demonstrate broad spectrum control of all pests targeted by fumigation.

Additional data is needed regarding biosolarization/ASD performance across a variety of soil types, weather and climate conditions, and almond varieties.

Technoeconomic studies are needed to clarify the cost per acre to use biosolarization/ASD.

Alternatives for Managing Problematic Weeds

Brad Hanson, UC Davis

Inputs for weed management

- Herbicides
- Effort / labor
- Cultural practices / management
- Fuel
- Technology

CA almond herbicide use

	Top active ingredients	2017 treated acreage
1	glyphosate	1,654,398
2	oxyfluorfen (Goal, Goaltender)	846,623
3	glufosinate (Rely)	625,175
4	paraquat (Gramoxone)	513,050
5	saflufenacil (Treevix)	508,432
6	indaziflam (Alion)	227,848
7	pendimethalin (Prowl H2O)	214,582
8	rimsulfuron (Matrix)	186,146
9	carfentrazone (Shark)	101,922
10	sethoxydim (Poast)	93,654
11	penoxsulam (PindarGT)	81,711
12	flumioxazin (Chateau)	73,143
12	pyraflufen (Venue)	69,630
14	2,4-D	63,689
15	clethodim (SelectMax)	50,410
16	oryzalin (Surflan)	43,176

Herbicide-resistant weeds

Glyphosate resistance in CA orchards

Confirmed

- Broadleaves
 - Horseweed (mostly winter)
 - Fleabane (mostly winter)
 - Palmer amaranth (summer)
- Grasses
 - Ryegrass (fall/winter)
 - Annual bluegrass (fall/winter)
 - Junglerice (summer)

Suspected or questionable

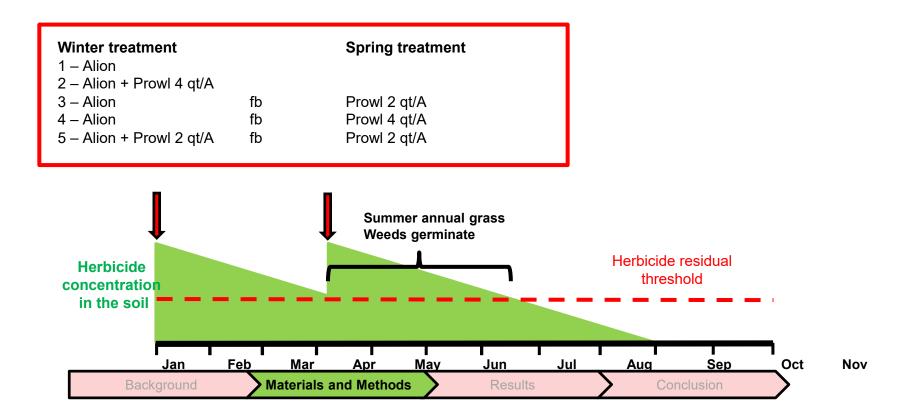
- Broadleaves
 - Lambsquarters (summer)
- Grasses*
 - Threespike goosegrass (spring)
 - Feather fingergrass (summer)
 - Windmillgrass (summer)
 - Sprangletop (summer)
 - Witchgrass (summer)

*Resistance in the world in several other Elusine, Chloris, Leptocloa, Echinocloa, Eragrastis spp.

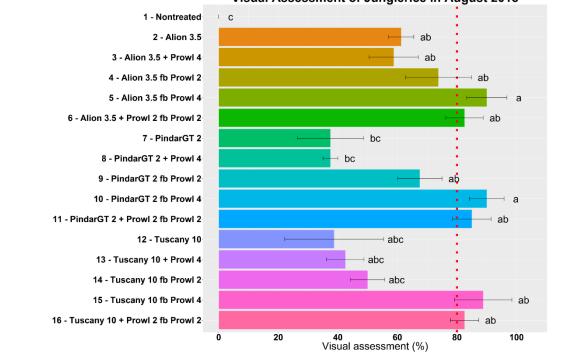
Multiple resistances

- Increasing issues with "stacked" resistance
- Widespread glyphosate-resistance in some species
- Starting to see gly-R plus resistance to some one or more other chemistries
 - Conyza, Lolium, Poa so far.
 - Paraquat, ACCase, some glufosinate reports

The future of almond weed management:


- a series of challenges, risks, and some opportunities

- Economic
- Environment (pesticides, dust, water, carbon, emissions, etc)
- Losses of key tools
 - Market-driven
 - Regulatory-driven
- The "three R's"
- System requirements and expectations



Johnny Carson as **Carnac the Magnificent**

Example sequential PRE with Alion as foundation treatment

Brunharo and Hanson

Visual Assessment of Junglerice in August 2018

Background Materials and Methe	ds Results	Conclusion
--------------------------------	------------	------------

Brunharo and Hanson

Water management / Chemigation

• Can we use existing technology differently to address specific weed management issues (e.g. summer weeds)?

Cover crop opportunities

Kern County - March 2018

Merced County - March 2018

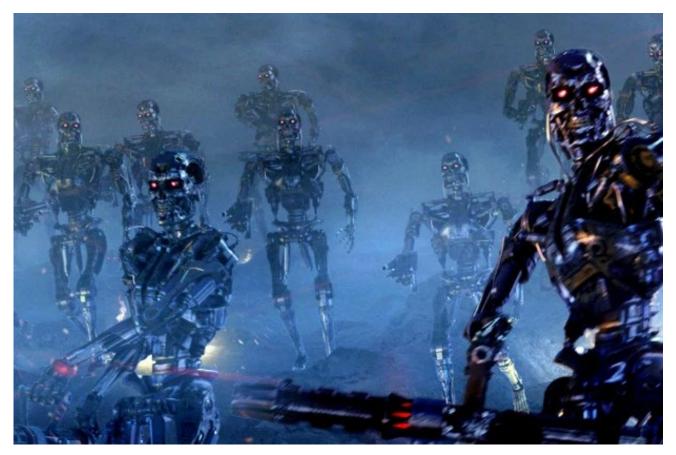
Tehama County - March 2018

Soil mix

Haring, Creze, Gaudin et al.

The "R" word (Roundup)

- Glyphosate classified as "probable carcinogen" in 2015
- IARC evaluation
 - New interpretation of existing data using a "hazard assessment"
 - Other agencies (USEPA, EU) previously interpreted these data and more differently using a "risk assessment" approach
- What does this mean for CA ag?
 - Added to CA Prop 65 list in 2017
 - I anticipate relatively little near term impact (ag) from a regulatory standpoint. But, considerable pressure from market forces in some sectors.
- Currently, a lot of litigation related to alleged glyphosate-caused cancer
 - Several important cases in CA state and Federal court jurisdictions
 - This will likely remain in the news for several years at least



CALL TOLL-FREE AND SPEAK DIRECTLY TO AN ATTORNEY FREE CASE EVALUATION - NO OBLIGATION

Regulations

- Several important herbicides (and other pesticide classes) facing challenges driven by:
 - Toxicity and worker safety concerns (e.g. closed handling systems, applicator licensing changes)
 - Export market concerns with residues
 - Domestic market consumer/buyers leveraging changes to production systems
 - Organic, sustainably-produced, non-GMO, glyphosate-free and similar.
 - True also of other orchard-related goals (e.g. sustainability, healthy soils, etc).
- This is not likely to get easier for the grower! Sorry.

Robotics

Robotics

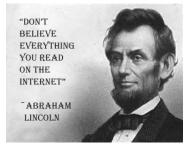
- Interesting work going on in autonomous vehicles for ag, including weed management tactics
- Likely will be opportunities for almond orchards

Naio Tech: Dino vegetable crop weeder

Vibro Crop Robotti

- Questions in my mind:
 - How are the weeds being controlled?
 - Can we use the technology to minimize our orchard weed control challenges and risks?
 - What is the trade off with regard to other challenges and risks?

GUSS autonomous orchard sprayer


Tertill (Roomba-style string trimmer)

- System requirements and grower/industry expectations
 - Extremely high expectations for weed control will be a major limitation to significant changes
- Autonomous vehicles (so far) will change "who" is doing the weed control practice but not yet the practices themselves.

https://images.app.goo.gl/DjhFywB6Coa9VYqx9

- We cannot solve our problems with the same thinking we used when we created them.
 - Quote attributed to Albert Einstein

- Sometimes a bigger hammer isn't the best solution for our orchard weed management challenges.
 - Quote attributed to Brad Hanson (who is, admittedly, no Albert Einstein)

Brad Hanson

bhanson@ucdavis.edu http://hanson.ucdavis.edu

UC Davis Weed Research and Information Center

http://wric.ucdavis.edu/ http://ucanr.org/blogs/UCDWeedScience/

UCDAVIS DEPARTMENT OF PLANT SCIENCES College of Agricultural and Environmental Sciences

Alternatives for Managing Replant Pests and Problematic Weeds

