

# **2018 THE ALMOND CONFERENCE**

APPLICATION AND PRODUCTION OF BLACK CARBON FROM ALMOND SHELLS

ROOM 306-307 | DECEMBER 6, 2018



#### AGENDA

- Guangwei Huang, Almond Board of California, moderator
- Bill Orts, USDA-ARS, Albany
- Sullivan Grosz, ABC Leadership Participant
- Ning Sun, Lawrence Berkeley National Laboratory





# Application and Production of Black Carbon from Almond Shells



William Orts – Research Leader, Bioproducts

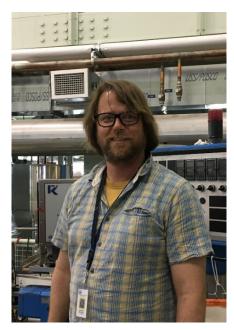
December 6, 2018

# Industry Partners & USDA Researchers



Karen Lapsley





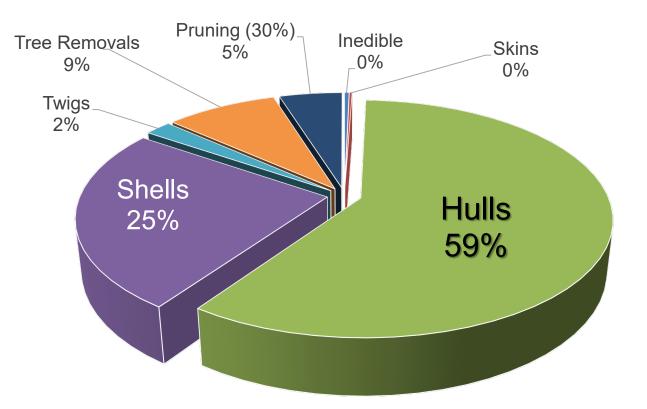

Guangwei Huang





**Bor-Sen Chiou** 



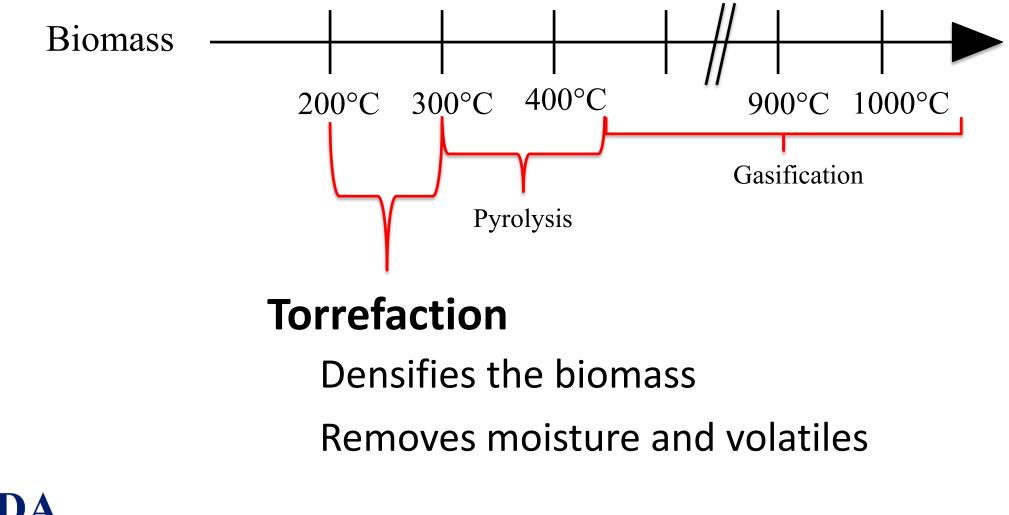

Zach McCaffrey





Carl Eidsath & Steve Lindsay

### **Almond Biomass Estimation**




2017 Almond Biomass (2.5 million tons)



Guangwei Huang, ABC

# Torrefaction, Pyrolysis & Gasification



# **Torrefied Almond Shells**



230°C

260°C

290°C



60 min 80 min 100 min

### **Composite** Processing








Torrefaction



Fine Milling





Sieving

Almond shells

**USDA** 



Milling to 5mm



Press



**Recycled plastic (Ecoplast)** 

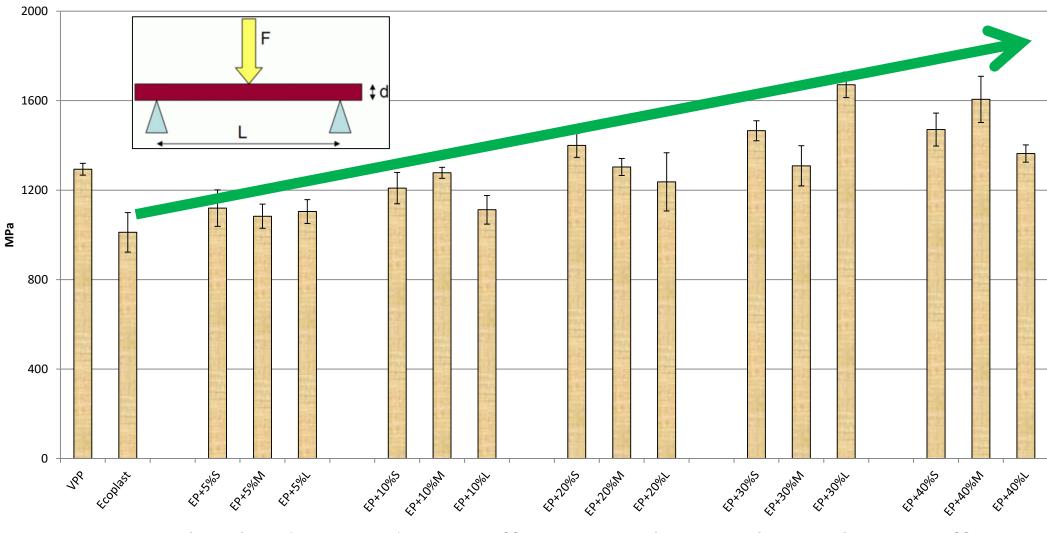


# **Torrefied Biomass-Polymer Composites**

**Torrefied Almond Shell** 

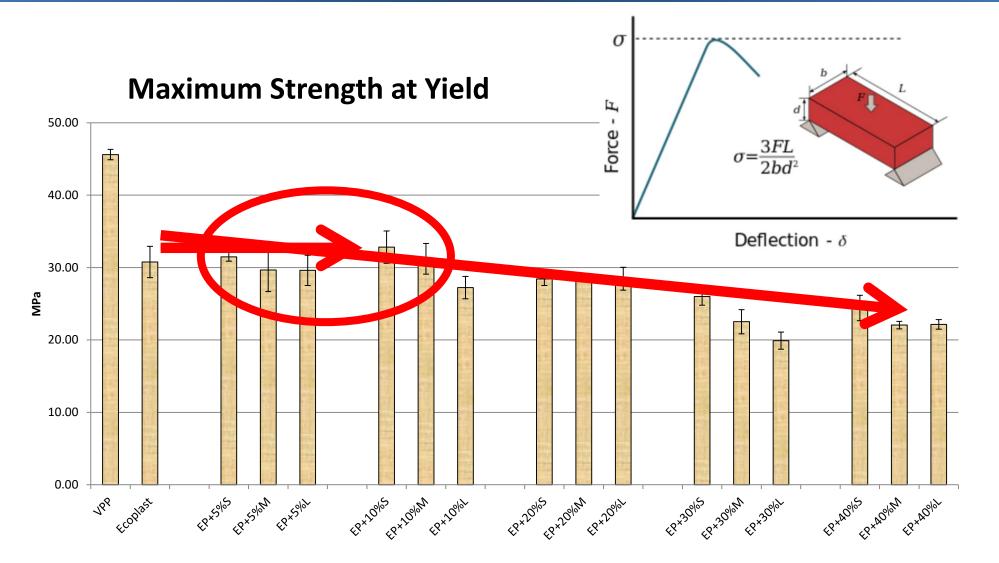





Torrefied Almond Shell in Polypropylene

Torrefied Almond Shell in PET

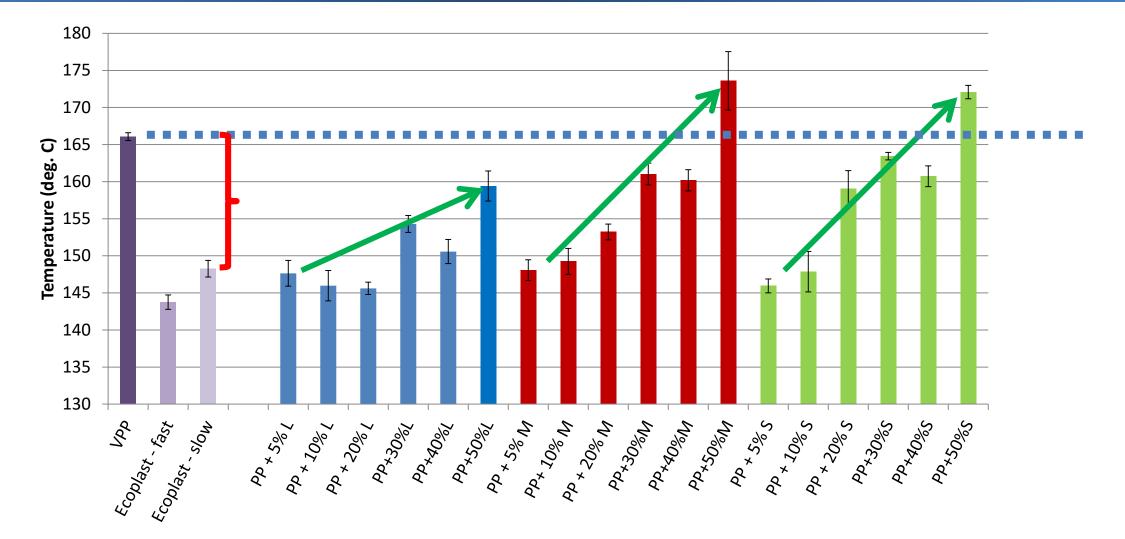
# **Mechanical Properties**




USDA



>> Higher loading produces stiffer material. Particle size has no effect.

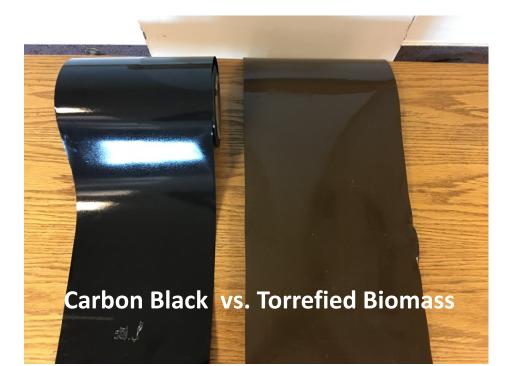

### **Mechanical Properties**





>> Higher loading produces lower maximum strength. Particle size has no effect.

# **HDT by Particle Size**






>> Smaller size particles increase HDT >> Higher % loading increase HDT

# **Extrusion at the USDA**





USDA

- Retrofit of our 18mm extruder.
- Can now make high quality sheet
- A potential commercial partner has been found for compounding sheets.

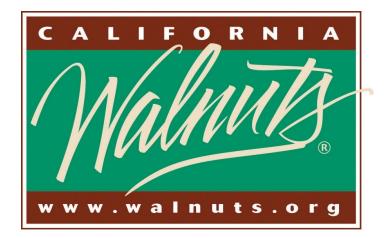
## **Torrefied Biomass in Plastics**







Sullivan Grosz Almond Leadership Program






#### Acknowledgements

- California Department of Food and Agriculture (Grant # SCB11021)
- **RPAC Almonds for donating almond shells**











#### Scaling Up Torrefied Almond Shells

By Sullivan Grosz





# USDA







#### New TAS Trials

- TranPak Domestic supplier of plastic pallets & bins
   Toured on February 5,th
- Repsco Global manufacturer of LDPE slip sheets
  - Toured on May 25th









#### Tranpak Trial #1 – August 21, 2018

<u>Materials</u>

• 50lbs – 30% TAS & 70% recycled PP

#### <u>Results</u>

- 10 pallets at 6-7% torrefied
- Machine function normal
- Pallets showed no change in pe
- Smells like bbq

Next Step???







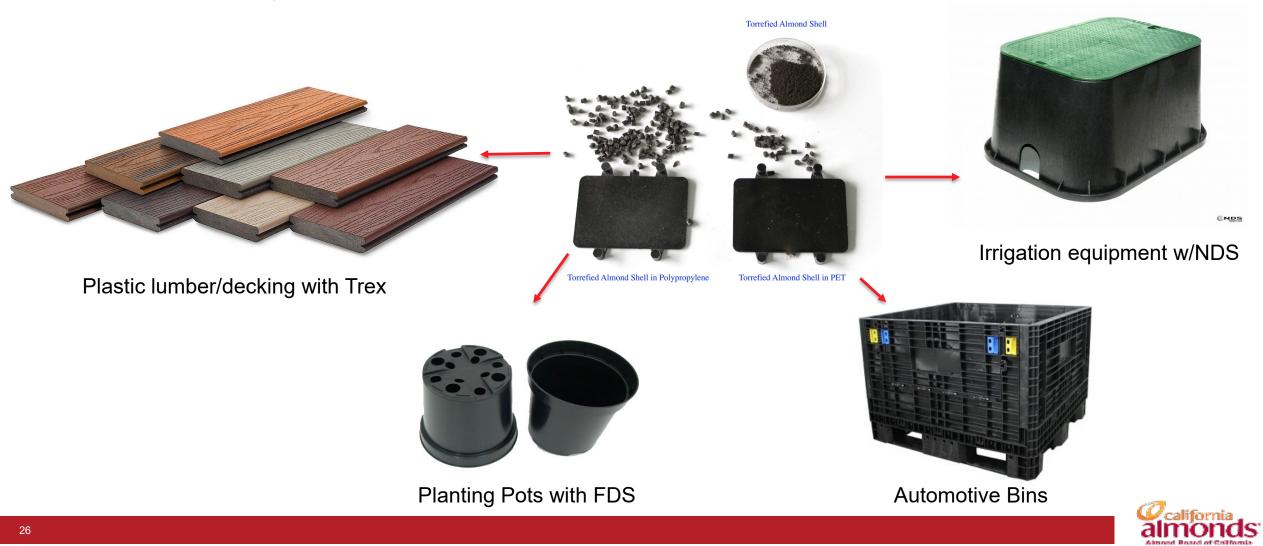




#### Challenges for More Uses of Torrefied Shells – There is no 1 stop shop!

#### Cost examples to make small quantity of torrefied materials:

- Shipping shells from Modesto to Illinois for torrefaction .... \$600
- Torrefaction of shells ...\$6500 (two days run to make 1500lbs torrefied shells)
- Shipping torrefied shells for grinding from Illinois to Arkansas... \$600
- Grinding of shells...\$2000
- Shipping from Arkansas to Virginia or Oregon... \$600
- Compounding cost... \$3800 (2 days run)
- Shipping from compounding facility to end users... \$600


Totalling almost \$15,000!!!





#### Potential Applications of Torrefied Shells Being Explored

• Torrefied shells may be used as plastic filler and enhancer, black carbon replacer, etc.







# Preliminary Techno-economic Analysis of Almond Shell Torrefaction

Ning Sun, Ling Liang, Gabriella Papa, Nawa Raj Baral, and Todd Pray

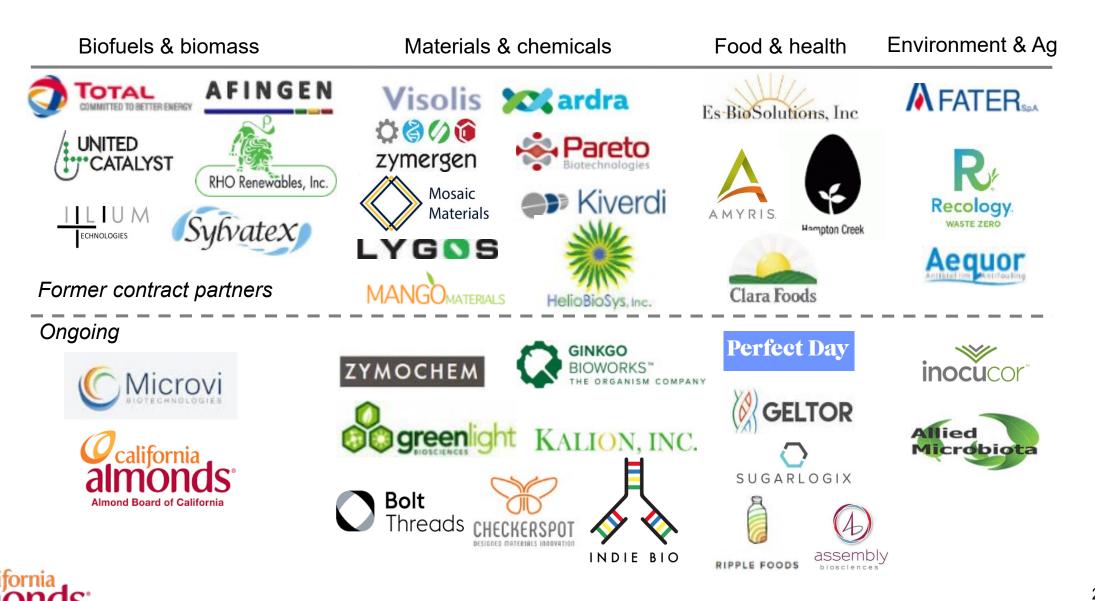
Research Scientist, Lawrence Berkeley National Laboratory

December 6, 2018 The Almond Conference





# **ABPDU's Mission**


# Partner with researchers from industry, the National Labs, and academia to optimize and scale technologies for bio-based chemicals / materials / fuels commercialization.

- Established by American Recovery and Reinvestment Act funds in 2009 roughly \$17 million invested in the 15,000 square foot bench-to-pilot demonstration Lab
- Managed by US DOE's Bioenergy Technologies Office (BETO) / Energy Efficiency & Renewable Energy (EERE)





#### Broad product, technology and industry collaborator base



Almond Board of California

ABXPDU

ADVANCED BIOFUELS AND BIOPRODUCTS PROCESS DEVELOPMENT UNIT

#### **Project Introduction**



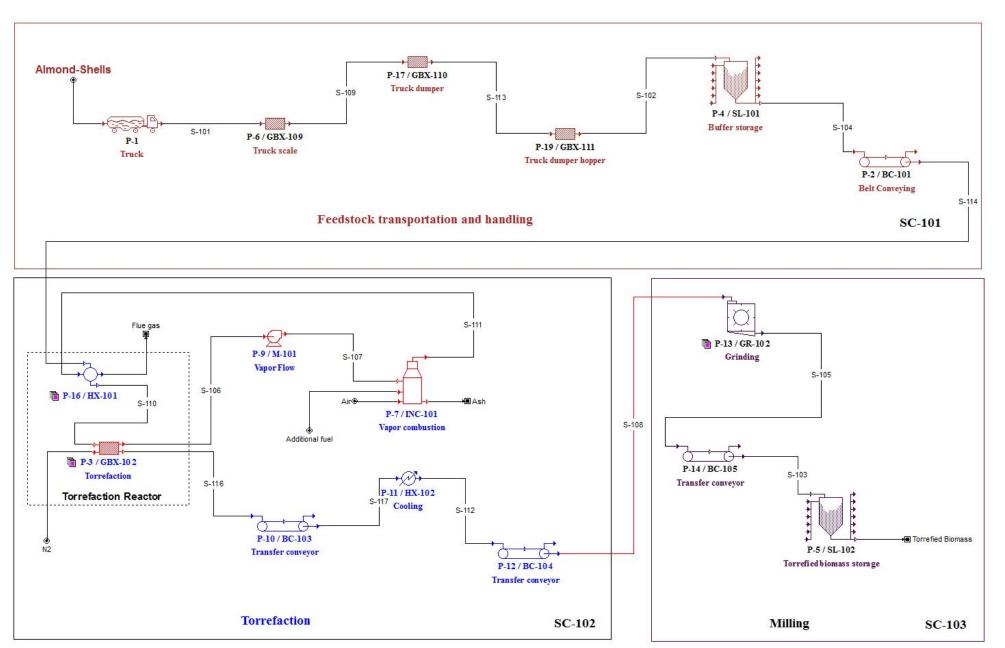
 Berkeley Labs in collaboration with Almond Board of California and United States Department of Agriculture (USDA) in Albany, CA







- Software: SuperPro Designer
- Three case studies with different plant sizes




#### **Almond Shell Torrefaction Process Flow**

AB

PDI

ADVANCED BIOFUELS AND BIOPRODUCTS PROCESS DEVELOPMENT UNIT



Almond Board of California

#### **Torrefaction Process Parameters for Modeling**



| Temperature                                     | (°C)                 | 250  |
|-------------------------------------------------|----------------------|------|
| Duration                                        | (min)                | 30   |
| Torrefaction yield of solid                     | (%)                  | 50%  |
| Torrefaction yield of vapor                     | (%)                  | 50%  |
| Energy density before                           | (MJ/kg)              | 19   |
| Energy density after                            | (MJ/kg)              | 25   |
| Nitrogen purge before reaction                  | (min)                | 20   |
| Average density of shells, at 20 °C, 1 atm      | (kg/m <sup>3</sup> ) | 0.20 |
| Density of milled shells/hulls, at 20 °C, 1 atm | (kg/m <sup>3</sup> ) | 0.43 |

- Torrefaction of biomass involves heating between 200 ~ 300 °C for 1 hour or less. This removes most moisture and volatile components.
- Biomass after torrefaction can be used as a filler in polymer composites
- According to USDA report, the filler concentrations were 5, 10, and 20% (w/w). The filler sizes were 163, 854, and 1545 um.



#### **Processing Plant Size Selection**



| Category                | Flow      | Unit     | Whole industry | Satellite center | Medium size plant | Small size plant |
|-------------------------|-----------|----------|----------------|------------------|-------------------|------------------|
| Yearly                  | Mass Flow | (MT/yr)  | 520,000        | 200,000          | 50,000            | 10,000           |
| Yearly                  | Mass Flow | (lb/yr)  | 1,146,392,000  | 440,920,000      | 110,230,000       | 22,046,000       |
| Daily                   | Mass Flow | (MT/day) | 1,576          | 606              | 152               | 30               |
| Daily                   | Mass Flow | (lb/day) | 3,473,915      | 1,336,121        | 334,030           | 66,806           |
| Hourly                  | Mass Flow | (MT/h)   | 66             | 25               | 6                 | 1.3              |
| Hourly                  | Mass Flow | (lb/h)   | 144,746        | 55,672           | 13,918            | 2,784            |
| Number of plants needed | /         | (EA)     | 1              | 2.6              | 10.4              | 20.0             |
| Farm land coverage      | /         | (acre)   | 1,330,000      | 511,538          | 127,885           | 25,577           |







#### **Economic Evaluation Case 1:**

#### Satellite Processing Centers 200,000 MT/year

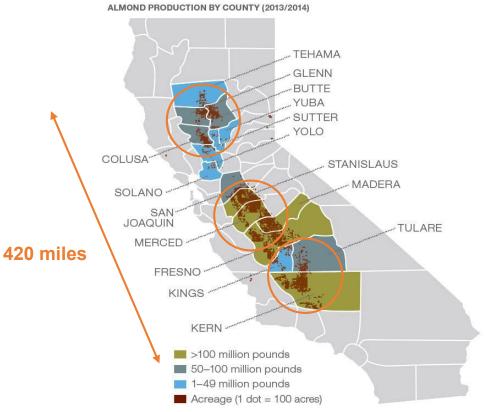


#### Key Assumptions for Each Plant



#### Plant site selection

- ideally close to large almond handlers
- capacity: 200,000 dry MT/year, 24 hours/day, 330 days per year
- feedstock shipping distance: <140 miles per round trip, with 70-mile collection radius
- Feedstock transportation and handling
- quantity per shipment: 20 dry MT
- frequency: 10,000 shipments per year
- almond shells process flow rate: 25 MT/hour
- 4 drivers per 8 hour shift, depend on distance


- The torrefaction process
- 9 reactors for torrefaction
- rated throughput: 3 MT/hour each, 24 hours/day
- mass yield : 50 % torrefied biomass, 50% vapor
- Nitrogen: 10 kg/h, 80 MT/year
- 2 technical staff per 8 hour shift
- vapor is utilized to generate heat
- Milling/grinding/size reduction
- 2 reactors
- rated throughput: 10 MT/hour each, 24 hours/day
- 2 technical staff per 8 hour shift



#### **Satellite Processing Centers**

- In total **3** satellite centers (northern, central valley, southern) can process the whole industry's 520,000 metric ton (MT) almond shells. The annual production is projected to increase.
- Feedstock is assumed to be delivered to the satellite storage near the plant, each storage/plant represents a 70-mile feedstock collection radius.
  Assuming 100% of the feedstock within that radius was available to the plant. The satellite plant size in present design is: 200,000 dry metric ton/year, (606 metric ton/day). With 12-months operation per year (24 hour/day).

| Category           | Unit     | Whole industry | Satellite process center |
|--------------------|----------|----------------|--------------------------|
| Yearly             | (MT/yr)  | 520,000        | 200,000                  |
| Yearly             | (lb/yr)  | 1,146,392,000  | 440,920,000              |
| Daily              | (MT/day) | 5,778          | 606                      |
| Daily              | (lb/day) | 12,737,689     | 1,336,121                |
| Hourly             | (MT/h)   | 722            | 25                       |
| Hourly             | (Ib/h)   | 1,592,211      | 55,671                   |
| Farm land coverage | (acre)   | 1,330,000      | 511,538                  |





ADVANCED BIOFUELS AND BIOPRODUCTS PROCESS DEVELOPMENT UNI



#### **Economic Evaluation - Almond Shells Torrefaction**

| Executive Summary (2018 prices)    |                  |  |
|------------------------------------|------------------|--|
| Total Capital Investment           | 17,849,000 \$    |  |
| Operating Cost                     | 17,217,000 \$/yr |  |
| Revenues from torrefied biomass    | 18,839,000 \$/yr |  |
| Unit Production Cost               | 173.64 \$/MT MP  |  |
| Selling price of torrefied biomass | <b>190</b> \$/MT |  |
| Gross Margin                       | 8.61 %           |  |
| Return On Investment               | 13.88 %          |  |
| Payback Time                       | 7.20 years       |  |





Preliminary Data for Discussion Only

#### Economics for 330 Days of Operation/year

| SUMMARY PER COST IT | EM (Entire Process) |        |            |        |
|---------------------|---------------------|--------|------------|--------|
| Cost Item           | \$/MT MP            | \$/day | \$/year    | %      |
| Raw Materials       | 100.30              | 30,137 | 9,945,223  | 57.77  |
| Facility            | 19.64               | 5,901  | 1,947,389  | 11.31  |
| Labor               | 22.64               | 6,801  | 2,244,471  | 13.04  |
| Consumables         | 0.00                | 0      | 0          | 0.00   |
| Lab/QC/QA           | 0.54                | 163    | 53,672     | 0.31   |
| Utilities           | 12.38               | 3,720  | 1,227,558  | 7.13   |
| Waste Trtmt/Disp    | 0.00                | 0      | 0          | 0.00   |
| Transportation      | 18.14               | 5,449  | 1,798,303  | 10.45  |
| Miscellaneous       | 0.00                | 0      | 0          | 0.00   |
| TOTAL               | 173.64              | 52,172 | 17,216,616 | 100.00 |

| Section                            | \$/MT MP | \$/day | \$/year    | %      |
|------------------------------------|----------|--------|------------|--------|
| Transportation                     | 124.72   | 37,474 | 12,366,472 | 71.83  |
| Torrefaction                       | 24.47    | 7,352  | 2,426,126  | 14.09  |
| Post Milling                       | 13.38    | 4,021  | 1,326,823  | 7.71   |
| Vapor combustion & heat<br>recover | 11.07    | 3,325  | 1,097,196  | 6.37   |
| TOTAL                              | 173.64   | 52,172 | 17,216,616 | 100.00 |

#### Torrefied shell cost: \$ 173.64/MT

#### Potential cost cut in:

- Transportation-shorter distance
- Labor more automation, fewer operators, fewer drivers
- Shell purchase price from \$50 to \$20 per MT
- Scale up from 200,000 to 500,00 MT/yr



Preliminary Data for Discussion Only

AND BIOPRODUCTS



#### **Economic Evaluation Case 2**

#### Medium Size Plants - 50,000 MT/yr

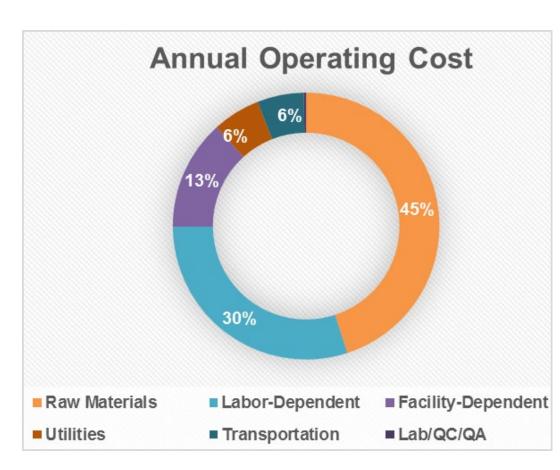




ABABAPD Advanced Biofu And Bioproduc

- Plant site selection
- closer to large almond handlers
- capacity: 50,000 dry MT/year, 24 hours/day, 330 days per year
- feedstock shipping distance: <70 miles per round trip, with 35-mile collection radius
- Feedstock transportation and handling
- quantity per shipment: 20 dry MT
- frequency: 2,500 shipments per year
- almond shells process flow rate: 6 MT/hour
- 2 drivers per day, depend on distance

- The torrefaction process
- **3** reactors for torrefaction
- rated throughput: 2 MT/hour each, 24 hours/day
- mass yield : 50 % torrefied biomass, 50% vapor
- Nitrogen: 2.5 kg/h, 20 MT/year
- 1 technical staff per 8 hour shift
- vapor is utilized to generate heat
- Milling/grinding/size reduction
- 1 reactor
- rated throughput: 2.83 MT/hour each, 24 hours/day
- 1 technical staff per 8 hour shift




Preliminary Data for Discussion Only



#### Economic Evaluation - Case 2

| Executive Summary (2018 prices)    |                 |  |
|------------------------------------|-----------------|--|
| Total Capital Investment           | 6,052,000 \$    |  |
| Operating Cost                     | 5,002,000 \$/yr |  |
| Revenues from torrefied biomass    | 5,653,000 \$/yr |  |
| Unit Production Cost               | 222.98 \$/MT MP |  |
| Selling price of torrefied biomass | 252 \$/MT       |  |
| Gross Margin                       | 11.52 %         |  |
| Return On Investment               | 14.95 %         |  |
| Payback Time                       | 6.69 years      |  |





Preliminary Data for Discussion Only



#### **Economic Evaluation Case 3**

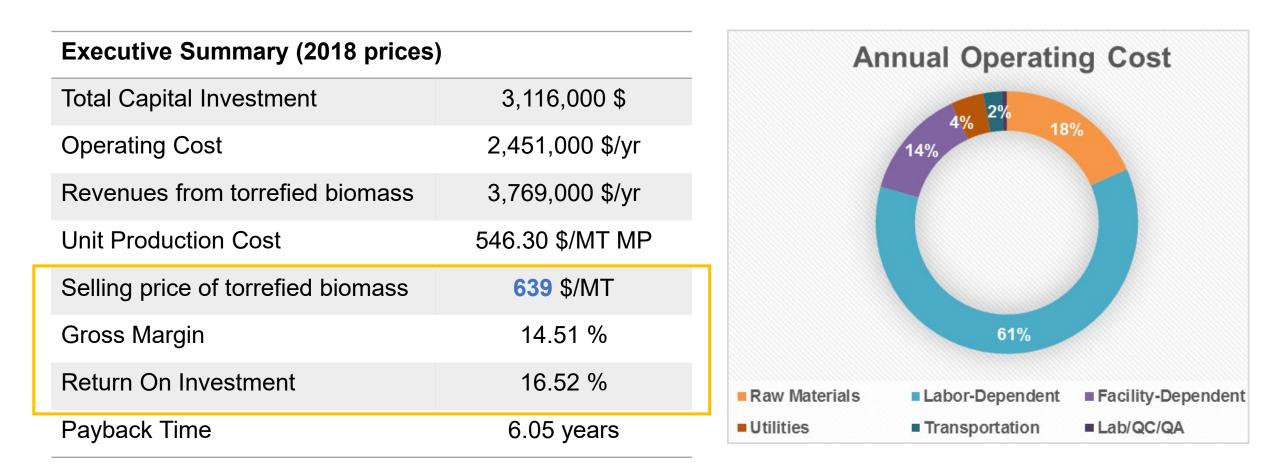
Small Size Plants - 10,000 MT/yr





#### Modified Assumptions for 10K MT/yr Plant - Case 3

- Plant site selection
- capacity: 10,000 dry MT/year, 24 hours/day, 330 days per year
- feedstock shipping distance: <70 miles per round trip, with 35-mile collection radius
- Feedstock transportation and handling
- quantity per shipment: 20 dry MT
- frequency: 500 shipments per year
- almond shells process flow rate: **1.2** MT/hour
- 1 driver per day


- The torrefaction process
- **1** reactors for torrefaction
- rated throughput: 1.2 MT/hour each, 24 hours/day
- mass yield : 50 % torrefied biomass, 50% vapor
- Nitrogen: 0.5 kg/h, 4 MT/year
- 1 technical staff per 8 hour shift
- vapor is utilized to generate heat
- Milling/grinding/size reduction
- 1 reactor
- rated throughput: 0.6 MT/hour each, 24 hours/day
- 1 technical staff per 8 hour shift



Preliminary Data for Discussion Only



#### Economic Evaluation - 10K MT/yr Plant





Preliminary Data for Discussion Only

#### Summary of the Models



#### Executive Summary (10,000 MT/yr)

| Total Capital Investment           | 3,116,000 \$    |
|------------------------------------|-----------------|
| Operating Cost                     | 2,451,000 \$/yr |
| Revenues from torrefied biomass    | 3,769,000 \$/yr |
| Unit Production Cost               | 546.30 \$/MT MP |
| Selling price of torrefied biomass | 639 \$/MT       |
| Gross Margin                       | 14.51 %         |
| Return On Investment               | 16.52 %         |
| Payback Time                       | 6.05 years      |

| Executive Summary (200,000 MT/yr)  |                  |  |  |
|------------------------------------|------------------|--|--|
| Total Capital Investment           | 17,849,000 \$    |  |  |
| Operating Cost                     | 17,217,000 \$/yr |  |  |
| Revenues from torrefied biomass    | 18,839,000 \$/yr |  |  |
| Unit Production Cost               | 173.64 \$/MT MP  |  |  |
| Selling price of torrefied biomass | <b>190</b> \$/MT |  |  |
| Gross Margin                       | 8.61 %           |  |  |
| Return On Investment               | 13.88 %          |  |  |
| Payback Time                       | 7.20 years       |  |  |

| Executive Summary (50,000 MT/yr)   |                 |  |  |  |
|------------------------------------|-----------------|--|--|--|
| Total Capital Investment           | 6,052,000 \$    |  |  |  |
| Operating Cost                     | 5,002,000 \$/yr |  |  |  |
| Revenues from torrefied biomass    | 5,653,000 \$/yr |  |  |  |
| Unit Production Cost               | 222.98 \$/MT MP |  |  |  |
| Selling price of torrefied biomass | 252 \$/MT       |  |  |  |
| Gross Margin                       | 11.52 %         |  |  |  |
| Return On Investment               | 14.95 %         |  |  |  |
| Payback Time                       | 6.69 years      |  |  |  |
|                                    |                 |  |  |  |



#### Capital Investment Breakdown Comparison



| Capital Cost Summary ( 200,000 MT/yr) |            |  |  |  |
|---------------------------------------|------------|--|--|--|
| Section Name                          | DFC (\$)   |  |  |  |
| Torrefaction                          | 5,794,000  |  |  |  |
| Milling                               | 5,651,000  |  |  |  |
| Vapor combustion                      | 4,392,000  |  |  |  |
| Direct Fixed Capital Cost             | 15,838,000 |  |  |  |
| Working Capital                       | 1,220,000  |  |  |  |
| Startup Cost                          | 792,000    |  |  |  |
| Total Investment                      | 17,849,000 |  |  |  |
|                                       |            |  |  |  |

| Capital Cost Summary ( 50,000 MT/yr) |           |  |  |
|--------------------------------------|-----------|--|--|
| Section Name                         | DFC (\$)  |  |  |
| Torrefaction                         | 2,144,000 |  |  |
| Milling                              | 1,681,000 |  |  |
| Vapor combustion                     | 1,589,000 |  |  |
| Direct Fixed Capital Cost            | 5,415,000 |  |  |
| Working Capital                      | 367,000   |  |  |
| Startup Cost                         | 271,000   |  |  |
| Total Investment                     | 6,052,000 |  |  |

| Capital Cost Summary ( | 10,000 Wi 1/yi ) |
|------------------------|------------------|
| Soction Namo           |                  |

| Section Name              | DFC (\$)  |
|---------------------------|-----------|
| Torrefaction              | 1,151,000 |
| Milling                   | 1,106,000 |
| Vapor combustion          | 534,000   |
| Direct Fixed Capital Cost | 2,791,000 |
| Working Capital           | 186,000   |
| Startup Cost              | 140,000   |
| Total Investment          | 3,116,000 |



# Thank you!





Almond Board of California

http://abpdu.lbl.gov/ nsun@lbl.gov

#### Fun Video 🙂

(https://www.youtube.com/watch?v=YdJ87OQHu-k)

# Almond Leadership Program

# Applications due 12/7/18

Visit the Almond Board booth to learn more