

More Almond Hulls for California Dairy Cows?

Session Speakers

Karen Lapsley, ABC

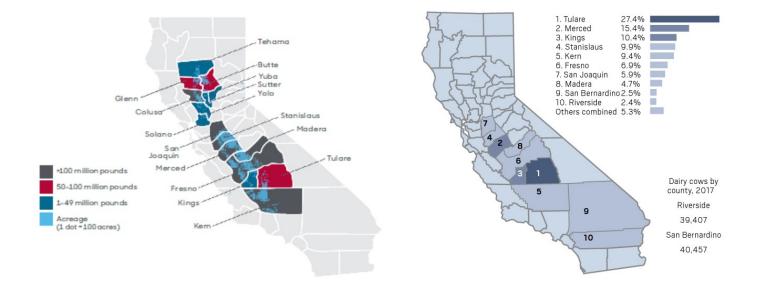
Ed DePeters, UC Davis

Jed Asmus, January Innovations, Inc.

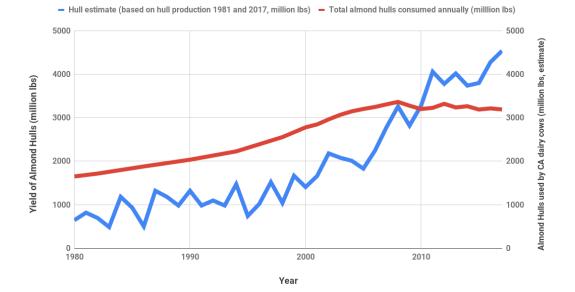
Feeding High Amounts of Almond Hulls (AH) to Lactating Cows Ed DePeters & Jed Asmus University of California at Davis January Innovations

Team Effort

Almond Board CA


- (Mr. Guangwei Huang & Dr. Karen Lapsley)
- Jed Asmus, January Innovations (ARPAS)
- Jennifer Heguy, UC Cooperative Extension (ARPAS)
- UC Davis
 - Hannah Bill (technician)
 - Katie Swanson (postdoctoral)
 - Staff at Dairy Facility & Feed Mill
 - Student Interns

CA: **#1** Almond & **#1** Milk State


- 1,000,000 bearing acres
- 330,000 nonbearing acres
- 1.14 million tons (shelled)

- 1,749,000 milk cows
- 1,300 dairy farms
- 40 billion lb milk

Projected AH Quantity & Dairy Cow Consumption

Yield of Almond Hulls in CA vs. Almond Hulls consumed by CA Dairy (million lbs)

Milk cows in CA fed 5 lb As Fed almond hulls

Objectives

- Evaluate the possibility of feeding high amounts of almond hulls to lactating cows.
- Determine the impact of foreign material, shells and sticks, on the quality (chemical composition & digestibility) of almond hulls.

Approaches

Lactation study

- Commercial versus Pure AH
 - In sacco disappearance in 2 ruminally fistulated, dry, dairy cows
 - In vitro rumen fermentation gas production
 - In vitro DM and NDF digestibility ('Daisy')
 - Chemical composition
- AH feeding survey of nutritionists

Lactation Study

- 12 lactating Holstein cows (96 DIM)
 - 4 1st , 4 2nd, 4 3rd lactation cows
- Treatments: 0, 4, 8, or 12 lb AH/cow
- Production performance: milk yield, milk composition & component yield, feed intake, and diet digestibility.

Statistical Design

Replicated 4 x 4 Latin Square

21 day periods

	Cows							
Parity 1	1	2	3	4				
Parity 2	5	6	7	8				
Parity 3	9	10	11	12				
Period 1								
Period 2								
Period 3								
Period 4								

Ingredient Composition of TMR (lb/cow)

Ingredient	0 lb AH	4 lb AH	8 lb AH	12 lb AH
Almond hulls	0	4	8	12
Alfalfa hay	23.3	23.3	23.3	23.3
Corn, flaked	20.9	19.3	18.2	15.0
Soy hulls	6.9	4.7	1.2	0
Wheat hay	2.0	1.5	1.5	1.5
Soybean meal	0.9	1.1	1.7	2.3
DDG	3.8	3.8	3.8	3.8
Cottonseed	2.3	2.3	2.3	2.3
Minerals Based on a	1.4 average intake o	1.4 f 61.5 lb	1.4	1.4

Composition of Almond Hulls

Item	Mean	SD	Minimum	Maximum
CF, %	14.85	1.77	13.80	17.50
Lignin, %	7.16	0.78	6.33	8.09
CP, %	4.45	0.24	4.20	4.70
EtOH CHO, %	32.03	2.16	29.70	34.10
H ₂ O CHO, %	34.65	2.24	31.80	37.20
aNDF, %	23.83	2.04	22.20	26.60
aNDFom,%	23.53	2.08	21.90	26.40
ADF, %	14.88	2.17	12.90	16.80
ADFom,%	14.00	2.35	11.50	16.10
Ash, %	5.91	0.33	5.63	6.31

CF As Is basis = 12.78%

N = 4 samples

Summary Production

ltem (lb/d)	0 lb AH	4 lb AH	8 lb AH	12 lb AH
DM Intake, lb/d	58.7	60.1	58.1	58.6
Milk, lb/d	85.4	86.5	81.2	82.9
ECM, lb/d	92.0	92.8	88.2	90.2
Fat, Ib/d	3.21	3.23	3.17	3.26

Summary Production

ltem (lb/d)	0 lb AH	4 lb AH	8 lb AH	12 lb AH
Milk, lb/d	85.4	86.5	81.2	82.9
Fat, %	3.81ª	3.78ª	3.95 ^b	3.97 ^b
Protein, %	3.46 ^a	3.43 ^a	3.35 ^b	3.33 ^b
Solids, %	12.58	12.58	12.65	12.64

Feed (DM) Intake

Feed (lb/d)	0 lb AH	4 lb AH	8 lb AH	12 lb AH
Parity 1	52.4	55.4	52.7	56.0
Parity 2	57.0	57.3	55.4	55.9
Parity 3	66.5	68.9	65.7	63.5
Overall	58.7	60.1	58.1	58.6

Milk Yield – Actual

Milk (lb/d)	0 lb AH	4 lb AH	8 lb AH	12 lb AH
Parity 1	73.5	77.8	69.5	74.8
Parity 2	81.2	81.4	76.3	78.5
Parity 3	98.8	100.5	97.5	95.5
Overall	85.4	86.5	81.2	82.9
Diet P <				

0.08

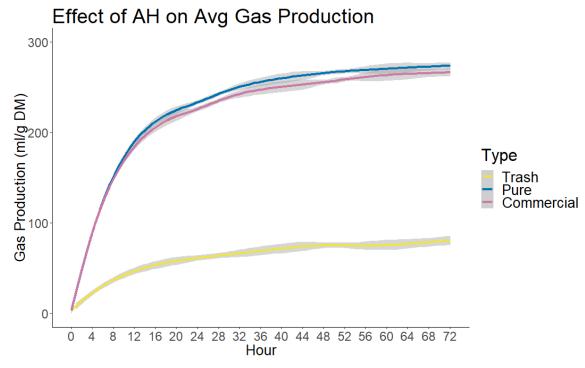
Milk Yield – Energy Corrected

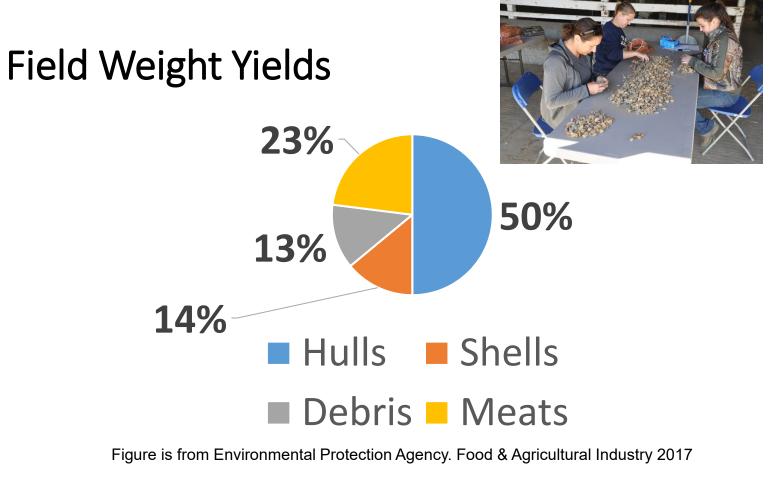
ECM (lb/d)	0 lb AH	4 lb AH	8 lb AH	12 lb AH
Parity 1	82.1	84.7	75.9	81.6
Parity 2	88.2	87.6	86.0	88.2
Parity 3	103.2	106.0	103.0	100.8
Overall	92.0	92.8	88.2	90.2

Energy-Corrected Milk accounts for volume and energy content of each milk component. Puts everything on an equal basis.

Summary Digestibility % Apparent Total Tract

ltem	0 lb AH	4 lb AH	8 lb AH	12 lb AH
DM, %	69.1 ^a	72.8 ^{bc}	72.2 ^{ab}	75.1 ^b
aNDF, %	47.5	51.4	49.0	52.9
aNDFom,%	47.9 ^a	52.6 ^b	50.5 ^{ab}	51.6 ^{ab}
ADF, %	41.6 ^a	43.5 ^{ab}	43.4	46.9 ^b
ADFom, %	42.2	44.2	43.1	46.4
CP, %	66.2 ^a	68.1 ^{ab}	66.8 ^{ab}	70.0 ^b


Approaches

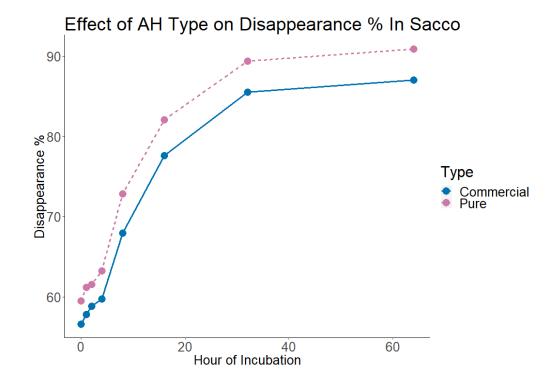

- Commercial versus Pure AH
 - In vitro rumen fermentation gas production
 - 0, 2, 4, 6, 8, 10, 22, 24, 26, 28, 30, 46, 50, 52, 54, 72 h (16 times points)
 - Rate & Extent of digestion
 - Energy estimate

In Vitro Gas Production

<u>Extent</u>: Pure (270 ml) > Commercial (268 ml) > Trash (79 ml) <u>Rate</u>: Pure = Commercial (10%/h) > Trash (7%/h)

5 Nonpariel AH (4.7% debris) 7 Other Variety (6.8% debris)

Approaches



- Commercial versus Pure AH
 - In sacco "disappearance" in 2
 - ruminally fistulated, dry, d
 - -0, 1, 2, 4, 8, 16, 32, 64 h
 - Rate & Extent

of disappearance

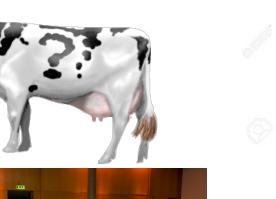
In Sacco Dry Matter Disappearance

Extent: Pure > Commercial. <u>Rate</u>: Pure (7.8%/h) > Commercial (5.5%/h)

How will a nutritionist use the data to feed cows?

"Thank You"

Almond Board of CA - Biomass Workgroup (almond handlers & growers)



THE END !!

QUESTIONS ??

Almond Hulls as Feed: <u>Current knowledge and future</u> <u>questions</u>

Jed Asmus, M.S., PAS January Innovation Inc.

The Current State of Affairs.

- Almond hulls (AH), are considered to be a by-product feed stuff by the feed industry
- In California, AH are primarily consumed by dairy cattle and growing animals as a pseudo forage / concentrate
- Bulk density of AH limit their transport to other feeding centers domestically and internationally due to the increased freight cost.
- Commercial AH are graded either as "prime" or "not-prime" by a 15% crude fiber max.
- California cows are feed on average 5 lbs. per head per day (3-8 range) (Based on Heguy et. Al 2018 survey)

The Last 3 Years in retrospect

Feed Codes:	ALMOND HULLS										
# of Samples:	571	Feed Codes:	ALMOND HULLS								
	1/1/2017 To 12/3	# of Samples	412	Feed Codes:	ALMOND HULLS						
Date Range:				# of Samples:	415						
Region:	West	Date Range:	1/1/2018 To 12/31/2018	Date Range:	1/1/2019 To 11/27/2019						
		Region:	West	-	West						
ANALYSIS RESU	LTS			Region:	west						
Dry Matter (%D		ANALYSIS RESU									
Moisture (%DM		Dry Matter (%)		ANALYSIS RESU	TS	AVERAGE	# OF SAMPLES	ST DEV	cov	-1 SD	+1 \$
	·	Moisture (%DN		Dry Matter (%		91.1	415	3.86	4.2	87.2	94.
PROTEINS		Hoisture (300)		Moisture (%DN		8.93	415	3.86	43.2	5.07	12.
Crude Protein (PROTEINS			,						
Adjusted Protei		Crude Protein ((%DM)	PROTEINS		AVERAGE	# OF SAMPLES	ST DEV	cov	-1 SD	+1 S
Soluble Protein ADF Protein (Al		Adjusted Prote		Crude Protein		5.83	391	1.18	20.2	4.65	7.0
NDF Protein (N		Soluble Protein		Adjusted Prote		5.44	108	1.27	23.3	4.17	6.7
Nor Protein (N	bicr) (/obiii)	ADF Protein (A		Soluble Protein		37.1	107	9.68	26.1	27.4	46.
FIBER		NDF Protein (N	IDICP) (%DM)	ADF Protein (A		0.89	39	0.52	58.4	0.37	1.4
Acid Detergent		FIBER		NDF Protein (N	DICP) (%DM)	1.17	37	0.62	53	0.55	1.7
	ent Fiber (%DM)	Acid Detergent	Fiber (%DM)	FIBER		AVERAGE	# OF SAMPLES	ST DEV	cov	-1 SD	+1 5
Crude Fiber (%	DM)		ent Fiber (%DM)	Acid Detergent	Fiber (%DM)	23.2	396	7,84	33.7	15.4	31.
Lignin (%DM)		Crude Fiber (%			ent Fiber (%DM)	29.4	394	9.4	31.9	20	38.
Lignin / NDF Ra		Lignin (%DM)		Crude Fiber (%		22.4	102	11.5	51.3	10.9	33.
NDF 30 HR Dige	estibility (%NDF)	Lignin / NDF R	atio	Lignin (%DM)		11.8	74	5.71	48.5	6.07	17.
CARBOHYDRATE	S	NDF 30 HR Dig	estibility (%NDF)	Lignin / NDF R	atio	36.1	74	7.18	19.9	29	43.
	e CHO (Sugar) (%l	CARBOHYDRATE			estibility (%NDF)	31.6	7	6.86	21.7	24.7	38.
Starch (%DM)			⊧⊃ e CHO (Sugar) (%DM)	CARBOHYDRATE		AVERAGE	# OF SAMPLES	ST DEV	cov	-1 SD	+15
Crude Fat (%D	M)	Starch (%DM)	e cho (sugar) (%DH)			30.1	364	8.39	27.9	21.7	38.
MINERALS		Crude Fat (%D	M)	Starch (%DM)	e CHO (Sugar) (%DM)	0.52	71	0.44	84.6	0.08	0.9
Ash (%DM)			,	Crude Fat (%DPI)	M)	2.53	402	1.4	55.3	1.13	3.9
Calcium (%DM)	MINERALS		crude rue (///2	,	2.00			00.0	1.10	010
Phosphorus (%	DM)	Ash (%DM)		MINERALS		AVERAGE	# OF SAMPLES	ST DEV	cov	-1 SD	+1 S
Magnesium (%	DM)	Calcium (%DM		Ash (%DM)		7.27	389	1.1	15.1	6.17	8.3
Potassium (%D	OM)	Phosphorus (%		Calcium (%DM)	0.26	111	0.1	38.5	0.16	0.3
Sulfur (%DM)		Magnesium (%		Phosphorus (%	DM)	0.12	111	0.03	25	0.09	0.1
Sodium (%DM)		Potassium (%E	DM)	Magnesium (%		0.11	111	0.02	18.2	0.09	0.1
Chloride (%DM)	Sulfur (%DM) Sodium (%DM)	`	Potassium (%)M)	2.69	111	0.68	25.3	2.01	3.3
Iron (PPM)		Chloride (%DM		Sulfur (%DM)		0.05	29	0.01	20	0.04	0.0
Manganese (PP Zinc (PPM)	(m)	Iron (PPM)	.)	Sodium (%DM		0.02	111	0.01	50	0.01	0.0
Copper (PPM)		Manganese (PF	PM)	Chloride (%DM)	0.07	28	0.03	42.9	0.04	0.
DCAD (meg/10	(adm)	Zinc (PPM)	,	Iron (PPM)		244	111 111	175	71.7 33.3	69.1	41
	,	Copper (PPM)		Manganese (PF Zinc (PPM)	'M)	16.2 17.1	111	5.39 13.8	33.3 80.7	10.8 3.31	21. 3
FERMENTATION		Molybdenum (F	PPM)	Copper (PPM)		6.46	111	4.01	62.1	2.45	10.
		DCAD (meq/10	00gdm)	DCAD (meg/10	(adm)	69.4	28	10.7	15.3	58.8	80.
ENERGY & INDE	X CALCULATIONS			Devid (med) 10	ogumy	0014	20	10.7	10.0	50.0	
Non Structural	Carbohydrates	FERMENTATION		FERMENTATION		AVERAGE	# OF SAMPLES	ST DEV	cov	-1 SD	+1 S
TDN (%DM)											
	tation (mcal/lb)		X CALCULATIONS	ENERGY & TNDE	X CALCULATIONS	AVERAGE	# OF SAMPLES	ST DEV	COV	-1 SD	+1 \$
Net Energy Mai	ntenance (mcal/lt	Non Structural	Carbohydrates	Non Structural		25.3	69	10.3	40.7	15	35.
		TDN (%DM)		TDN (%DM)	caroonyarates	70.2	396	6.69	9.5	63.5	76.
Net Energy Gain		Not Engrave Lag	tation (mcal/lb)			0.73	396	0.07	9.6	0.66	0.
Non Fiber Carbo	ohydrates (%DM)			Net Energy Lac							
Non Fiber Carbo	ohydrates (%DM) Carbohydrates (%	Net Energy Mai	intenance (mcal/lb)	Net Energy Lac Net Energy Mai							0.5
Non Fiber Carbo		Net Energy Mai Net Energy Gai	intenance (mcal/lb) in (mcal/lb)	Net Energy Mai	ntenance (mcal/lb)	0.74	396 396	0.1	13.5 19.1	0.64	
Non Fiber Carbo		Net Energy Mai Net Energy Gai Non Fiber Carb	intenance (mcal/lb)	Net Energy Mai Net Energy Gai	ntenance (mcal/lb)	0.74	396	0.1	13.5	0.64	0.8

The samples reported are from on farm samples, used for formulation and quality analysis by dairymen, nutritionist and buyers

What varies year to year?

	<u>2017</u>			2018			2019		
Nutrient	And See	Tells,	And the second	And a	STOP TO STOP	Tolor 1x	And Bee	STOP TO STOP	X1 SIDE
Crude Protein	6.16	4.48	7.84	6.3	4.8	7.8	5.83	4.63	7.01
ADF	23	17.5	28.6	23.2	17.7	28.8	23.2	15.4	31.1
NDF	31.6	25.4	37.8	29.5	22.7	36.3	29.4	20	38.8
Sugar	31.6	25.4	37.8	31.6	24.7	38.5	30.1	21.7	38.5
Fat	2.37	0.59	4.15	2.56	0.12	5	2.53	1.13	3.93
ASH	7.45	6.46	8.44	7.41	6.5	8.32	7.27	6.17	8.37
NeL	0.73	<u>0.67</u>	0.79	0.74	0.67	0.81	0.73	0.66	0.80
NDFD30	28.6	25.5	31.7	15.4	14.7	16.1	31.6	24.7	38.4

Sugar??? Really?

- Chemically, what makes up Almond hulls
 - The carbohydrates get mixed between fiber and sugar on the standard feed test
- We have been told for years that they contain pectin.... But where is it?
- Work by ABC has shown that actual pectin content runs between 2-3 % of mass.
- We also know that green hulls contain larger amounts of starch then sugar.

Let's review how the forage digestibility compares

	Corn Silage	BMR	Almond Hulls	Pure Hulls	Non Hulls
Sample #	532	21	177	1	1
Dry Matter	34.5	34.6	86.1	91.3	91.7
Protein	7.96	7.94	5.81	4	4.7
NDF	41.6	44.7	28.3	21.7	58.2
NDFD30	59.1	69.7	29.5		_
ADF	26.1	27.7	20.7	15.5	41.9
Lignin	2.96	2.37	12.3	11.4	19.95
Starch	28.6	24.6	2.03	0.4	0.4
Sugar	2.43	2.97	32.03	38.1	12.3

What is NDFD 30 and why do cows care

- The ability for dairy cattle to make milk is directly related to the amount they can eat.
 - If we can increase the amount of intake milk production is increased at a rate of 1:1.5
- NDFD 30 is the amount of NDF that digests in 30 hours and is an indication of quality for all forage type products.
- In general, the larger the NDFD30 value the more valuable the feed stuff as a source to produce milk.

Compared to standard / accepted feed stuffs, Almond Hulls look like a poor source of digestible forage!

What Happened to the Mass?

- The law of conservation of mass states that mass can not be created nor destroyed.
- On a standard feed sample, the mass reported should total 100%.
 - Due to separate analytical methods for each portion of a feed, the total should "actually" be very near 100%
- The quick method for determining if the sample nears 100% is
 - Protein + NDF+Fat+Sugar+Starch+Ash

This Sample again....

SAMPLE INFORMATION					MINERALS			
Lab ID:	27272 095	Series:			Ash (%DM)	5.80		
Crop Year:	2019	Version:	1.0		Calcium (%DM)	0.22		Total mass
Cutting#:					Phosphorus (%DM)	0.09		0101111033
Feed Type:	ALMOND HULLS				Magnesium (%DM)	0.11		
	NALYSIS RESULTS				Potassium (%DM) Sulfur (%DM)	2.57		reported:
Moisture				9.4	Sodium (%DM)	0.04		reported.
Dry Matter				90.6	Chloride (%DM)	0.02		
PROTEINS		% SP	% CP	% DM	Iron (PPM)	77		
Crude Protein				4.0	Manganese (PPM)	11		
Adjusted Prote				1.0	Zinc (PPM)	7		
Soluble Protein			28.3	1.1	Copper (PPM)	5		72.79%
Ammonia (CPE ADF Protein (A			19.3	0.77	Molybdenum (PPM)			
NDF Protein (N			25.2	1.00				
NDR Protein (N			23.2	1.00	FERMENTATION			
Rumen Degr. F					Total VFA			
righter beginn					Lactic Acid (%DM)			
FIBER			% NDF	% DM	Lactic as % of Total VFA			What's
ADF			66.7	20.5	Acetic Acid (%DM)			What S
aNDF			00.7	30.7	Propionic Acid (%DM)			
aNDFom				30.1	Butyric Acid (%DM)			missing?
NDR (NDF w/o sulfite)					Isobutyric Acid (%DM) 1, 2 Propanediol (%DM)			maang
Crude Fiber								
Lignin			33.71	10.36	Nitrate Ion (%DM)			
NDF Digestibili	ity (12 hr)				ENERGY & INDEX CALCULATIONS			
NDF Digestibili	ity (24 hr)				pH			
NDF Digestibility (30 hr)					TDN (%DM)	63.6		
NDF Digestibili					Net Energy Lactation (Mcal/lb)	0.64		
NDF Digestibili	ity (240 hr)				Net Energy Maintenance (Mcal/lb)	0.63		
uNDF (30 hr)					Net Energy Gain (Mcal/lb)	0.36		
uNDF (240 hr))				ME (Mcal/lb)	1.1		
					NDF Dig. Rate (Kd, %HR, Van Amburgh, Lignin*2.	4)		
CARBOHYDRA	TES	% Starch	% NFC	% DM	NDF Dig. Rate (Kd, %HR, Van Amburgh, iNDF)			
Silage Acids			F4 D	20.4	Relative Feed Value (RFV)			
	le CHO (ESC-Sugar)		51.3	30.1	Relative Forage Quality (RFQ)			
Starch	CHO (WSC-Sugar)		0.7	0.4	Milk per Ton (lbs/ton) Dig. Organic Matter Index (lbs/ton)			
Soluble Starch			0.7	0.4	Non Fiber Carbohydrates (%DM)	58.71		
Soluble Fiber					Non Structural Carbohydrates (%DM)	30.5		
Starch Digestil	bility (7 hr)				DCAD (meg/100gdm)	63.2		
Crude Fat				1.79		THE MARK		
Fatty Acids, To	otal (%DM)					பிர்கல், ப		
Acid Hydrolysis	s Fat				Additional sample information, submitted			
					documents and lab pictures linked to QR code	1.5 2.5		
						面缘())		
						CELEMONY & U.S.		

38

What does this mean?

- Currently Almond hulls look worse on paper then they feed.
- Survey results (Heguy et.al) indicate that nutritionist use Almond Hulls as a source of digestible fiber, comparable to Almond Hulls.
- However, the lack of a complete nutritional profile limit the ability for ration balancing software to completely value Almond Hulls.
- This leaves a fundamental gap in the understanding of what and how almond hulls work in the digestive system of dairy cattle.

Where to????

- Determine what comprises the missing mass?
 - What methods can we use?
 - How do those methods overlap / compare to understood analytical methods?
- Develop nutrition model inputs that represent the "complete" mass of almond hulls, allowing for complete analysis of their value as a feed stuff.
- The missing mass is being digested... according to our un-biased customer... What is it?

Thank You.

More Almond Hulls for California Dairy Cows?

Thank you!