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I CASP Turns 10 - Participant & Orchard Statistics

2397 Participates

791 Organizations

240,639
22% Orchard Acres*

493.296
45% Organization Acres*

*Percentage Statewide Bearing Acreage
Updated November 25, 2019
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B CASP Timeline & Evolution
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I Participant Statistics
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I Total Orchard Module Responses
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I CASP Participation - Irrigation Type Used

1 0%
1 1 %

" Micro-Sprinklers N

Drip

33%

79%

Using Micro-Irrigation




I CASP Irrigation Information — How Irrigation Decisions are Made

Use Schedule ETc Based Water District Deficit Irrigation
Program Scheduling Influenced Schedule Used at Hull Split
Remotely Read Soil Manually Read Soil Pressure Chamber Pressure Chamber to
Moisture Sensors Moisture Sensors Used Determine First Irrigation
)
Use Flow Meters Estimate Water Use Hand Feel Method Used Use Soil Auger to

to Determine Moisture Check Moisture
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I CASP & Farm Sustainability Assessment (FSA) Scoring

150 —

Advanced

120 —

(@)
O

|
Basic

Essential

l 100%

O | |

FSA Scoring
2014 2015 2016 2017 2018 2019

Developed by SAI Platform, the Farm Sustainability Assessment (FSA) is a set of tools for food and drink businesses that want to assess, improve and validate on-farm
FARM SUSTAIABILTY sustainability in their supply chains. The tools enable effective and efficient supply chain collaboration right down to the level of the farmer.
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https://saiplatform.org/
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Figure 2: Irrigation Calculator Tool Adoption by Month up to July 31, 2019.
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N CALCULATOR

I Nitrogen Tool Adoption by Time

NITROGEN BUDGET WORK FLOW &  GowAsesmen
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Figure 1: N-Calculator Tool Adoption by Month up to July 31, 2019.
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Thank You

Tom Devol
tdevol@almondboard.com

530.570.5558
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Diminishing returns? Irrigation and
photosynthesis in almond

« Tom Buckley & Heather Vice

« UC Davis Department of Plant Sciences
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I How does regulation of tree water use via irrigation
affect photosynthetic carbon gain in almond?

ET
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I How does regulation of tree water use via irrigation
affect photosynthetic carbon gain in almond?

(1) Irrigating to ETc is not optimal with respect to photosynthesis,

so redistributing water use over the season will increase total carbon gain

(2) In-season drought will irreversibly reduce photosynthesis, due to

hydraulic failure and suppression of photosynthetic enzymes

@ california

almonds



I We modeled canopy photosynthesis from sap flow, leaf-level
physiological measurements and meteorological data

« 20 trees (Nonpareil and Aldrich)
* Nickels research orchard (Arbuckle)

« Two 7-10 day transient droughts for half the trees

 californi
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I Sap flow, canopy conductance & canopy photosynthesis

dry-downs
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I Hypothesis (1): Redistributing water across the season

return
(carbon)

will increase total carbon gain

investment
(water)

water use

(optimal minus |

actual)

1.0

0.5 -

0.5 1

grapevine (Mallorca)
20% gain possible

0915
1100
1345

Time

Buckley et al. (2014)
Plant Cell Environ 37:2707

1600

1830
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I Hypothesis (1): Redistributing water across the season

will increase total carbon gain

0.6 July-Aug
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I Hypothesis (2): In-season drought will irreversibly reduce
canopy photosynthesis

canopy carbon gain (mol m’ day'l)
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(1) reduced photosynthetic capacity

(2) reduced stomatal opening due
to hydraulic failure
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I In-season drought will irreversibly reduce
canopy photosynthesis
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I Hypothesis (2): In-season drought will irreversibly reduce
canopy photosynthesis

(2) hydraulic failure?

®  control
81 » stress

stem hydraulic conductance at 25°C
(mmol m >t MPa 1)
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I Hypothesis (2): In-season drought will irreversibly reduce
canopy photosynthesis

(2) hydraulic failure?
artificial droughts
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I Take-home messages

* Photosynthesis is not "saturated” with respect to
water use (in this orchard)

* Irrigating to ETc is surprisingly efficient with
respect to photosynthesis

 Moderate in-season drought may (semi?)-permanently
reduce photosynthesis

 due to reduction of water transport capacity
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I Questions moving forward:

« Examine photosynthesis and hydraulic failure
in the context of harvest stress

« Quantify effect of temperature on photosynthetic
capacity beyond current climate envelope
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Validating ET estimates for almonds

Andrew J. McElrone; ajmcelrone@ucdavis.edu U>-——S-DA s




Water lost: replacement needs

Detect crop stress: push thresholds to
achieve water savings and other outcomes




California Irrigation Management Information System (CIMIS)
_ *
ET =K *ET,

Tree evapotranspiration Crop coefficient

/ \
KC = ETC/ ETo

Obtained from plants
in weighing lysimeter

Reference ET
(well-watered
model grass)

T R~ T ...assumes a disease-free plant
Kearney Agricultural Center grown under optimum soil water

Univ. of California- Parlier CA and nutrient conditions...
Doorenbos and Pruitt, 1977
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Surface Energy Balance: Partltlonmg of energy at the surface
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Surface Renewal- Theory vs. Reality

'

theoretical
Temp Temp / Temp /‘ Temp /|—/
Time Time Time Time ‘
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Successfully removed the need to calibrate against expensive research grade system

(Shapland et al. 2012a,b, 2014)



Goal: inexpensive, site-specific measurement of actual crop
water use

e Your 24/7 Automated Irrigation Advisor
S u rfa Ce Re n ewa I . Actual ET Powers Simple, Actionable and More A%urate Irrigation Decisions

<ok

xxxxxxxxx

iy i1 % 31313 § %

Sensgy - on

International”

i == AGRI-CENTER

Research Grade System ~$10K
Paw U et al. (1989, 1991, 1995)

FEATURED BY: ‘\ N

Commercial System The Wall Street Journal




New Surface Renewal Method vs. Aimond Weighing Lysimeter

.........

2018

et | =] L

h
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: y = 0.59x + 1.35
; ° R2 = 0.85
) 1 2 4 G g 10

ET, Surface Renewal (mm)

ET, Lysimeter (mm)

Kearney Agricultural Center
Univ. of California- Parlier CA




New Surface Renewal Method vs. Aimond Weighing Lysimeter

e R~
Kearney Agricultural Center
Univ. of California- Parlier CA

ET, Surface Renewal (mm)

101

R? = 0.78, Slope = 0.59, Intercept = 2.42 ‘
9 N ®

s~ 2019 '

Yy =0.59%x+2.42
R?=0.78

ET, Lysimeter (mm)



Daily ETmm H20D

New Surface Renewal Method vs. Aimond Weighing Lysimeter
Kearney Agricultural Center, Univ. of California- Parlier .CA %
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New IRT ET Method vs. Surface Renewal ET

Temperature Comparison

= Type E Thermocouple

= |RT
36

34
32
30

28

Temperature [Celsius]

26

24
12:00 12:05 12:10 12:15 12:20 12:25 12:30

Jul 31, 2019



IRT Wavelets Evapotranspiration [mm d™]

New IRT ET Method vs. Almond Eddy Covariance ET

R? = 0.97, Slope = 1.07, Intercept = —0.16
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Grape Remote sensing Atmospheric Profile
& Evapotranspiration eXperiment
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Refine and apply a multi-scale remote sensing ET toolkit for mapping
crop water use and stress for improved irrigation management in CA

GOES - West (4km)

GOES/MODIS/Landsat fusion (30m)
- s o k1 ) N

:;DJA‘J? o L

e

Two Source
Energy Balance

ABL

} T,
Energy balance:
ET = (Rygr- G) -
R, %" H=H_+H,
HT
Eo

Skm

ALEXI
{Atmosphere-Land Exchange Inverse model)
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Monitor various vineyards

Test variations in:
Climate, Vine Type,
Trellis Design...

Sierra Loma 2018 Barrelli 2018

Ripperdan 2018

Sep
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ET (mm/day)
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Precipitation (mm)
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Knipper et al. 2019
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Provide weekly total
ET for irrigation
decision support
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Conclusions

* How much?
- SR accurately measures vineyard water loss
- New IRT and remote sensing methods are
promising
* When?
- More work to resolve stress
- Continuing work on infrared sensors



Assessment of Almond Water Status ‘
Using Inexpensive Thermal Imagery

Brian Bailey — U.C. Davis Dept. Plant Sciences

Project Personnel: Magalie Poirier-Pocovi — U.C. Davis
Dept. Plant Sciences

Project Cooperators: Bruce Lampinen, Astrid Volder — U.C. Davis
Dept. Plant Sciences
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I Project Goals

» Evaluate infrared thermography as a potential tool for measurement of
plant water needs.

— Can low-cost thermal cameras be used to infer water status?
— Is thermography appropriate for scheduling irrigation?

almonds
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I Inferring Water Status from Infrared Thermography
Basic Theoretical Premise

evaporative

cooling .
minimal

cooling

well-watered water stressed
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I Inferring Water Status from Infrared Thermography

Color Image | Thermal Image

well-watered

2183

' ~
water stressed ‘

{
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I Inferring Water Status from Infrared Thermography

In general, this Is not a new technique.

* Pioneered by ldso eta al. (1981). Normalizing the
stress-degree-day parameter for environmental
variability. Agric Meteorol. 24:44-55

* Dozens of papers illustrating that the technique can
detect crop water “stress”




I Inferring Water Status from Infrared Thermography

Inherent Limitations:

« Cost: starts at around $20,000

« Speed: We really want to do the data processing in real time to
give an indication of water status.

- 12

Frequenc

6

4

. M

5l

2426283032343638404244
Temperature (°C)

Software
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I Reducing the Cost

$399

160x120

8-14 um

IOS or
Android

@ california
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I Drone-Based Thermal Sensing

Thermal camera and data recorder for drones

« ~$2,000
 Microbolometer

« Basically the same as the smartphone FlirOne smartphone camera, but with
higher resolution and on-board processing.

almonds



I Accuracy and Precision of Low-Cost Thermal Cameras

low accuracy, high precision high accuracy, low precision

» Inexpensive thermal cameras (microbolometers) have relatively good precision, but poor accuracy
(x8°F error)

» Good for looking at relative differences in temperature within an image, but not good for measuring the
actual value of temperature

« Bottom line: need a calibration or reference surface/temperature within each image
almonds




I Inferring Water Status from Infrared Thermography

Challenges in Applying Thermal Methods:

The temperature of a leaf is influenced by many other factors
besides how much we water the tree:

« Weather: sunlight, air temperature, humidity, etc.

This means we need to correct or “normalize” our temperature
for weather




I Inferring Water Status from Infrared Thermography

Calibrating for Weather Effects:

“dry” temperature (maximum) “‘wet” temperature (minimum)




I Inferring Water Status from Infrared Thermography

Easier Method for Collecting Reference Temperatures

SHADE SUN
‘!I - f
_@i_ = -ff :
® ONE | ®) P
© \
T ] i 4 A |
i _.,{J 5 e \ \“‘: eﬁ
@)

HdVIDOLOHd

HANLOId TVINIAH.L

In the sun, we could accurately
estimate the wet and dry reference
temperatures based on the
temperature of green paper.

CWSI =

Tdry_Twet
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I Inferring Water Status from Infrared Thermography

Q: Does the CWSI really remove the effects
of weather?

CWSI Sensitivity Analysis

0.09 o
. 008 |
A: Almost. . oos | B
0.06 |
O 005 |
004 |

0.03 oPAR_
002 O Tair
001 ++ RH

0

CWSI =

Tdry_Twet

B | J;E 03 04
The CWSI is as sensitive to the wind as it is to stomata
(i.e., water status) — this is a problem.
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I How Does It Perform?

1.2

|
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I How Does It Perform?

Ttrunk — Tsoil

CWSI =

Tair T Tsoil

0.9

0.8 |
0.7
0.6 |
0.5
04 r
03 r
0.2 |
0.1

CWSI, (dimensionless)

CWSI based on trunk temperature

5 10 15 20
Number of days after irrigation

TRUNK

—B— Control
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I Summary

* |s leaf/canopy infrared thermography capable of measuring almond water
“stress™?

—Yes, if the trees are very stressed. But when they are very stressed, you
can probably see the symptoms visually.

* |s leaf/canopy infrared thermography capable of capturing spatial variation in
water status across the orchard? (e.g., broken irrigation line, significant
changes in soil texture)

— Yes, provided the variation is “significant”.

* |s leaf/canopy infrared thermography useful for determining when to irrigate?
— Unless you are running deficit irrigation, not really.
* |s leaf/canopy infrared thermography useful for determining how much to
irrigate?
— Not really, because it is not very sensitive when trees are fully hydrated.

almonds



I Work for Next Season

* Further explore the idea of trunk
temperature based method

* Verify results on different soil types

¢, california
alond Boarglfrclalg\§l

Alm




Thank You

bnbailey@ucdavis.edu

baileylab.ucdavis.edu

b,
‘ > PLANT SIMULATION
| "/ LABORATORY

This research was supported b the Almond Board of California project #17-
HORT31-Bailey/ 18-HORT31-Bailey / 19-HORT31-Bailey




I Tree water sensors that are currently on the market
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I Tree water sensors that are currently on the market
(futuristic vision of the multi-purpose sensor, 1966)

Diagnosing plant physiolocg
activities and drought stress

What would a p
measure?
*Plant water pote
*Photosynthetic g |
(CO; assimilaticgy
«Chiorophyll flucl il
efficiency of pho§
sTranspiration (
in temperature)
“Water use efficiency (ratio of CO,
assimilated to H,O transpired)
*Stress-responses; hormones,
transcripts, metabolites
«Growth rate
«Growth direction and onentation

ey

I the TV Semdd S Tk, & ncoider a8
hancdheld scorrang aed analfyin dagnoiix drace

Erape prele [ e e

"‘ Teaching Tools
i in Plant Itlrﬂﬂ'ﬁl" AR INNOVATION FROM THE PLANT CELL B 3o i harindy ! Fiem lsiaguy
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I Direct and Indirect measures of water stress in almonds:

1) Plant water is under tension, especially
when soil dries.

2) Assuming that the level of tension itself is
the cause of almond water stress
responses, the methods that measure this
tension directly are:

a) Pressure chamber/’/bomb’
b) Micro-tensiometer
c) Psychrometer/Hygrometer

\;, 3) Some processes that can be used as
indirect indicators of water stress are:
a) Growth patterns of various parts (e.g.,
= 7 I RN TS~ the trunk)

b) Leaf or canopy temperature
c) (Many others)

The perfect water sensor? 1$ I
— almonds



I Almond lysimeter, Kearney Ag Center,
Parlier, CA.

1) Directly measure ET

2) Use as a tool to study water stress

4,16 01:00 PM

30 MINUTES . AUG.2
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ETc: “Evapo-Transpiraiton” of the Crop.
Can be accurately measured as the daily loss of water weight.

2500

_ 2000+
Lysimeter

Relative Weight
(kg) 1500-

10001

Daily ETc
(mm)

10 -

(10 mm= 570 Ibs. = 69gal)

16 30
Date, June, 2019
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I Sensors: Direct (SWP)

1) Pressure chamber (many types)

Below Above
balance balance
point point

Magnifying
glass

Pros: Established accuracy/repeatability; mobile
(test multiple trees/sites).

Pressure
gauge Pressure

chamber

Cons: Not automated, typically used for daily
(midday) snapshot.

Air [
pressure
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Sensors: Direct (SWP)

1) Pressure chamber (many types)
2) Microtensiometer (FloraPulse)

Home Our story FAQ

“,
¢ 9FloraPulse &

C)

Join Mailing List

_ oo il " s
i \

Pros: Automated 24/7 data; robust.

Cons: Fixed location (tree); still working on
accuracy/repeatability.

ORMATION

Developed by researchers from Cornell University with over 40 years experience, our patented microsensors accurately
measure water potential in your vineyard or orchard. Get ready to know exactly what your field is feeling, at any time,
along with science-based recommendations for your specific crop and goals. It's like paying everyday for a consultant to
take pressure bomb readings and a plant scientist to analyze the data. We do it for you. Irrigation management has never

been this easy... or accurate.

81
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Sensors: Direct (SWP)

1) Pressure chamber (many types)

2) Microtensiometer (FloraPulse)

3) Miniature SWP sensor (Saturas — not tested)
(_ paturas

eeeeeeeeeeeeeeeeeeee
for Pracision Irrigation Home | About Us Our Technology | Our Team News v Contact Us

Advanced Decision
Support System for
Optimal Irrigation

Pros: Automated; presumably robust.

Cons: Fixed location (tree); accuracy/repeatability
not yet clear.

Uncertain: Midday SWP reported, but based on
correlation to 24h average (Good? Bad?).

@ liforni
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Sensors: Direct (SWP)

1) Pressure chamber (many types)

2) Microtensiometer (FloraPulse)

3) Miniature SWP sensor (Saturas)

4) Stem Psychrometer/Hygrometer (ICT)

il Temperature compensated in-situ stem psychrometer (direct) a

: y
- \ e \’

W oy | IS AN A A

Pros: Automated 24/7 data.

Cons: Fixed location (tree); difficult to know if data is
correct without pressure chamber check; very
temperature/handling sensitive; not robust.

< SO
A -

h i

First publication: Dixon and Tyree, 1984
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I Sensors: Indirect (growth/swell/shrink)

1) Trunk dendrometers (Phytech)

g Phgfech HOME  CROPS  LOGIN  CONTACT
" -
|

Phytech connects you directly to the plant
providing certainty in dE!Cl sion makin ng,
\'L: -tion and reducing ris

THE PHYTECH PLATFORM

Pros: Automated, 24/7 data; robust.
o o ((0))0

Cons: Indirect; limited (5) levels of ‘plant status’ TS 2
(saturated, no, low, mild, or high stress); "f“"':}:ftgf"“"s
typically based on a minimum of 3 trees. -
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Q: What should we expect from any tree water sensor?

A: Should be able to detect stress as it develops, in time for irrigation decisions.

Below Above
balance balance
point point

Magnifying
glass

Pressure
gauge Pressure
chamber
4l Temperature compensated in- s:tu stem psychrometer (direct) a
d Ul
Air ]
pressure

First publication: Dixon and Tyree, 1984
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I Example 7 day irrigation cycle in August

ke 1.31 1.4

19 1.15 1.20 1.07 0.87
g ]
E 0.8: (ET,)
04 (Almond tree ET)
(0 {amed L — 4 £
O.
—~ . (Baseline SWP)
% ~ . y . & ...-.:,
g 0o WW W W
o
=
n
-20% : . : . ; ; : : ; ; ;
4 3 6 7 8 9

Date, August, 2019
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I Example 7 day irrigation cycle in August

ke 1.31 1.4

191 1.15 1.20 1.07 0.87
g ]
E 0.8: (ET,)
04 (Almond tree ET)
(ORE— — — ; - — :
O-
—~ . (Baseline SWP)
e . . ..o. . .‘. R % . . . ‘..-.:-
s ® e ©® . * * o
§ a0 N W W W
% (Bomb)A
(7))
-20+ :
4 3 6 7 8 9

Date, August, 2019
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ET (mm/h)

SWP (Bars)

1.2

' (ETo)
] (Almond tree ET)

0.8

0.4

-10°

c?o

Example 7 day irrigation cycle in August

ke 1.31

0.87

MlcrotenS|ometer)

(Baseline SWP)

(No) (No) (Low) (Mild) (Severe)| (Phytech Dendrometer)

6 7 8 9
Date, August, 2019
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I 2019: There were many periods of stress, some intentional (hull split, harvest), some not.
1)

The sensor best correlated to ET stress over the season was the 24h average SWP measured with the
microtensiometer (installed 6/20/19).

2) However, all methods tested were able to detect stress, and all indicated a relatively rapid development of
stress at the end of the irrigation cycle (important troubleshooting information).

1.41

1.2

1.0

0.81

Crop K¢

0.61

0.4

Jan. FEB MAR APR MAY JUN JUL AUG SEP OCT

Date, 2019 @ california
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I Overall conclusions:

1) Sensor readings (or just more frequent pressure chamber readings) are very
effective tools for trouble-shooting irrigation practices (e.g., we probably
should have increased irrigation frequency in August in the lysimeter plot).

2) We also obtained preliminary evidence that daily trunk growth (dendrometer
measurements) may be helpful in deciding when trees are ready to shake. It
appears that just a few days of no net growth (due to water stress) may be
associated with an increased resistance to shaker injury. This should be
confirmed with further research.

Thanks to cooperators/students: May Culumber, Bruce Lampinen, Guillermo
Zamora, Andrew McElrone, Alireza Pourreza, Florent Trouillas, Reza Ehsani,
Phytech, FloraPulse, KARE Crew.

Thanks for your support and attention!
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Research Update:
How Much and When
to Irrigate
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Thank you!
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