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CEUs – New Process
Certified Crop Advisor (CCA)
• Sign in and out of each session you attend. 

• Pickup verification sheet at conclusion of each 
session.

• Repeat this process for each session, and 
each day you with to receive credits.

Pest Control Advisor (PCA), Qualified 
Applicator (QA), Private Applicator (PA)
• Pickup scantron at the start of the day at first 

session you attend; complete form.

• Sign in and out of each session you attend. 

• Pickup verification sheet at conclusion of each 
session.

• Turn in your scantron at the end of the day at 
the last session you attend. 

Sign in sheets and verification sheets are located at the back of 
each session room.
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products
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December 5, 2017



• World population is 
expected to grow to 
9 billion by 2050

• Demand for animal 
protein is projected 
to increase by 76% 
by 2050

• Livestock production 
currently uses more 
than 2/3 of 
agricultural land

van Huis, 2016.  Proc. Nutr. Soc.



Addressing food insecurity will require 
innovative approaches to food production 
that are more sustainable than current 
practices while still yielding nutritious food



Insect production offers one potential 
solution to food insecurity 

• Insects have high conversion efficiency
– Cattle require 8 kg of feed to produce 1 kg of 

edible weight
– Insects require 1.5 kg of feed to produce 1 kg 

of edible weight
• Insects are a natural component of diet for 

fish and poultry
• Insect farming requires less land and water 

and results in less greenhouse gas emissions 
compared to livestock farming

Greenhouse gas production per kg 
protein produced (Oonincx and de 
Boer, 2012)



abc.net.eu

popsci.com

sfchronicle.com

allaboutfeed.net



https://www.eatgrub.co.uk

https://chirpschips.com

http://focusonbelgium.be



Insects at Commercial or Near 
Commercial Production

• Crickets
• Grasshoppers
• Mealworms
• House fly
• Silkworm
• Black soldier fly larvae (BSFL)



Characteristics of BSF that Make Them 
Ideal for Production

• Non-pest insect 
• Do not carry harmful 

pathogens
• Enhance organic matter 

decomposition process
• Grow on many types of organic 

matter
• Nutritional value for feed



BSFL Nutritional Value
Percentage of dry weight depending on 
production feedstock
• Crude protein: 39 – 43% 
• Methionine: 0.5 – 0.9%
• Calcium: 0.12 – 6.6%

Challenges
• Composition varies with production environment
• A consistently sourced feedstock is needed to achieve consistent larvae 

composition
Spranghers et al. 2017. J. Sci. Food Ag.



In 2016, the CA almond industry produced 3.37 
billion pounds of almond hulls and 1.35 billion 
pounds of almond shells (CA Almond Board, 2017)

By-products from the almond industry are a 
potential resource for insect production



Preliminary Studies
• Preliminary studies 

done in May, 2017 
indicated larvae will 
grow on almond 
hulls and shells

• Requested funds 
from ABC for 
additional research



Management steps and variables in 
larvae production

grinding

Growth feedstock

CultivationNitrogen
Water

Aeration

Spent feedstock

Larvae

BSFL rearing & 
inoculation

(time, temperature)



Processing steps
• Pollinator variety hulls obtained from 

processor in Chico, CA in June 2017.  
Material had been stored outdoors 
under roof 

• Material was ground
– Used hammer mill (1/4 inch screen).  

Additional small batch grinding with 
coffee grinder

• Water and nitrogen added and 
equilibrated overnight at 4oC prior to 
each experiment



Processing steps
• BSF eggs purchased 

from commercial 
supplier

• Larvae reared from eggs 
and separated from feed 
prior to inoculation onto 
moistened hulls



Processing steps
• Larvae inoculation 

onto hulls
• Incubation and 

larvae cultivation 



BSFL Cultivation Reactors

Filter to prevent BSFL escapeExhaust fitting

Inlet fitting 
for 
aeration

Solid tubing

Perforated hose

elbow

End plug

Inoculated 
hulls



Larvae Cultivation Reactors



Production Array



BSF Life Cycle

Size at 
inoculation

{Size at 
harvest {

https://taxo4254.wikispaces.com/Hermetia+Illucens



Larvae harvest
• Developed 

baiting system 
for harvest

• Larvae also 
collected 
manually





Measurements
• Larvae specific growth: 

– change in larvae mass per mass 
inoculated onto hulls

• Yield: 
– change in larvae mass per change in 

hull mass
• Calcium and amino acids in 

harvested larvae
• Hull consumption
• Change in hull composition



Experimental Variables
• Aeration (oxygen supply)
• Moisture
• Particle size
• Nitrogen supplementation
• Feeding rate



Aeration

• Metabolism of hulls is 
expected to increase with 
increasing air supply

• Experiments were 
completed with varying 
aeration levels



Aeration increases larvae growth
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Aeration increases larvae yield from hulls
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Aeration increases hull consumption
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Microorganism synergy or competition 
with larvae?

• Microorganisms are growing 
simultaneously with larvae

• Do certain conditions support 
microorganism growth over 
larvae growth?



Low aeration supports microbial consumption 
of hulls over larvae consumption
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Moisture
• Water is essential for growth and breakdown of 

hulls by microorganisms and larvae
• As received moisture content of hulls was <20% 

wet basis
• Experiments were completed to test larvae 

growth at varying moisture levels
– Incubations were completed with and without larvae



There is an optimum moisture for 
larvae growth on hulls
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Larvae yield increases with moisture
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Larvae enhance the decomposition of hulls 
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Potential mechanisms for enhanced 
decomposition

• Synergy with microorganisms
• Microorganisms in the gut of 

larvae contribute to 
decomposition

• Increased mixing associated 
with larvae results in 
improved distribution of 
nutrients required for all 
organisms to grow



Nitrogen supplementation
• Nitrogen is important for the synthesis of 

enzymes necessary to breakdown hulls
• The carbon to nitrogen ratio (C/N) of as-

received hulls was 60
• Experiments were completed to test larvae 

growth on hulls amended with urea to 
achieve different C/N levels 
– Two particle sizes of hulls were also tested
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Increasing C/N supports microbial growth 
on hulls over larvae growth
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Summary
• Black soldier fly larvae can be cultivated on 

almond by-products
• Cultivation variables (aeration, moisture and 

C/N) impact growth and yield from hulls
• Cultivation conditions play a role in 

consumption of hulls by microorganisms 
versus larvae 



Future Research
• Additional variables to examine for impact on 

larvae growth and hull consumption
– Almond by-product sources
– Alternative nitrogen sources
– Cultivation time and temperature
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Biosolarization - a method to recycle 
almond waste biomass and disinfest 
orchards during replant
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Biosolarization



Field soil
Compost inoculum 

(optional)
Agricultural or food 

processing organic residues

Biosolarization uses soil amendments to induce microbial activity.

+ +



SPREAD ORGANIC MATTER 
AMENDMENTS ON SOIL

INCORPORATE AMENDMENTS 
AND SMOOTH SOIL

LAY DRIP LINEAPPLY CLEAR FILM AND 
IRRIGATE TO FIELD CAPACITY





Tarp

Atmosphere

Soil
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BACTERIA PRODUCE BIOPESTICIDES 
VIA ANAEROBIC FERMENTATION

FOR EXAMPLE, ORGANIC ACIDS:

ACETIC ACID

PROPIONIC ACID

BUTYRIC ACID



How can we maximize 
biosolarization performance when 
using almond processing residues?



Initial screening of almond processing residues

Material N (% dw)C (% dw) C/N
Moisture content 

(g water/g fresh weight)
VS content 

(% dw)
Water holding capacity 

(g water/g dw soil) pH

Soil 0.13 1.52 12.07 0.12 9.57 0.44 7.01
Pollinator 

shells 0.58 48.73 84.51 0.12 96.46 1.44 4.70

Pollinator 
shells and hulls 0.60 46.00 76.67 0.12 94.26 1.51 4.71

Nonpareil hulls 0.65 43.07 65.92 0.14 90.60 2.02 4.81



Initial screening of almond processing residues

• Anaerobic soil bioreactors 
simulate soil conditions 
during biosolarization.

• Examined soil amended 
with 5% hulls, shells, or 
hull/shell mix.



Hulls and hull/shell mix are sufficiently biodegradable to 
drive soil fermentation during biosolarization 

Acidification after 8 days 
simulated biosolarization is a 
predictor of pest inactivation 
in the field.0
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pH

- worm castings + worm castings



Hull- and hull/shell mix-amendments lead to 
accumulation of organic acids in the soil

Endogenous organic acids on 
almond residues provide 
immediate acidification of the 
soil, which may improve pest 
inactivation kinetics.
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Image: Howard Ferris, UC Davis

Root lesion nematode 
(Pratylenchus spp.) 
inactivation



Extracts from amended soils exhibit robust 
nematocidal activity
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• Soil amended with 
nonpareil hulls (5% dw).

• Aqueous extracts taken 
immediately after 
amendment and after 8 
days of anaerobic 
incubation.



Biosolarization field work

Current field work in 
collaboration with

Image: Nicolaus Nut Co.



Biosolarization field work

• Kittyhawk Ranch
• 50 acre orchard
• Recently removed walnut 

orchard
• Slated for replanting with 

Nonpareil, Bennett-Hickman, 
and Monterey varieties

• Grower offered 8.9 acres 
for biosolarization trial
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Biosolarization field work – soil responses

Image: Nicolaus Nut Co.

Pest levels:
- Total and phytoparasitic nematodes
- Pathogenic microbes
- Weed coverage

Phytonutrients:
- Total and mineral N
- Extractable P and K

Microbiome:
- Diversity
- Pathogenic taxa
- Enrichment of microbes involved in 
mineralization

Pest stresses:
- Soil heating
- Soil acidification

Pending



Weed inactivation
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Significant nematode reduction in 
treated plots by 10 days of treatment
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Solar heating elevated peak and 
average soil temperatures
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Organic acids accumulated in 
biosolarized soils
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Soil column bioreactors are used to study biosolarization 
effects as a function of soil depth

• Columns allow aqueous 
sampling every 6 inches 
down to 5 ft depth.

• Irrigation can be 
controlled and tracked 
throughout the column.



Irrigation during biosolarization can leach 
biopesticidal organic acids deeper into the soil



Biosolarization field work - responses

Direct and drone-based measures of 
tree vigor:
- Trunk diameter
- Canopy area
- Chlorophyll index
- Indicators of disease

- Stunting
- Thinning
- Yellowing/dieback

- Yield (eventually)



Biosolarization field work - value

Image: Nicolaus Nut Co.

• Benefits
• True translational study with all 

farm operations and materials 
that would be used at 
commercial scale.

• Measure interactions between 
biosolarization treatments and 
almond varieties.
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Torrefaction of Almond Shells: Properties and Applications
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Adding Value to Almond Co-Products
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Outline

• Improving heat stability of plastics using shells
− Torrefied biomass-polymer composites

− Conclusions

− The Issue

• Improving their mechanical properties too 

− Scale up to Pilot-scale

− Potential commercial production 
• Current and future work



The Issue: Almond Biomass is Increasing  Good News!

G. Huang, Associate Director, Food Research and Technology August, 2017
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The Relative Value of Co-Products is Decreasing 

G. Huang, Associate Director, Food Research and Technology August, 2017

Inedible
0%

Skins
0%

Hulls
59%

Shells
25%

Twigs
2%

Tree Removals
9%

Pruning (30%)
5%

2017 Almond Biomass (2.5 mil. MT DM)

Hulls once fetched
~$125/ton Our Goal: 

Add value to 
shells >$25/ton

The industry is losing millions in potential revenue……



Torrefaction

200°C 300°C

Torrefaction
Biochar

0°C

− Removes moisture and volatiles → stable to microbial attack

− Energy value ~ low rank coal
− Densify torrefied biomass → cheaper to transport

− Torrefaction: 200oC to 300oC under inert atmosphere 



Torrefied Almond Shells

60 min 80 min 100 min

230oC

260oC

290oC



Torrefied Biomass-Polymer Composites

− Alternative to wood-polymer composites 
− Wood-polymer composites: > 1 million tons annually for non-

structural applications
− Torrefied biomass: process composites over 200°C, more

hydrophobic, lower moisture 



88

Making plastic parts with almond shell additives
Torrefied biomass:

Almond shells at 280°C
Walnut shells 260-280°C

Polymer:
Polypropylene

Bor-Sen Chiou



89

a.k.a.  the heat distortion temperature
Temperature at which material deforms under specific load

Polypropylene       15% Torrefied 15% Torrefied
almond shells                  pine



a.k.a.  the heat distortion temperature
Temperature at which material deforms under specific load

PP       Talc CaCO3      Fiber       Torrefied Torrefied
almond shells   pine



Early Research – Lab Scale
• Different torrefied biomass 

sources improved the 
properties of plastics at lab 
scale

• Problems with brittleness 
were identified



Tensile Properties
12.5 % (w/w) torrefied almond shells

Polypropylene: 
Modulus: 909 MPa 
Strength: 36 MPa 
Elongation: 715% 



Scanning Electron Micrographs of Composites

− Space between filler + polymer→ weak
interfacial adhesion

− Consistent with tensile properties

− Polymer strands in filler space→ some
adhesion between filler + polymer



Pilot-scale Torrefaction Reactor

− Three heating zones to control temperature
− Produce 10-20 lbs of torrefied shells/hour
− Provide consistent samples for optimization

studies



How?  Next Step – Scaled R&D
• Produce tons of Material

• Torrefied material was provided under contract from Earth Care Products 
using a DOE-funded  torrefaction ‘truck 

• The USDA has been offered a “Free” lease on this



Recent Research – Pilot Scale

• We challenged the industry to 
create “buckets” of material, 
which have been processed

• We produced sheet capable of 
making high quality parts at 
pilot scale.  





Commercial Application

• Grow Plastics and FDS Manufacturing are purchasing a 
compounding extrusion sheet line capable of 1,000 lbs/hour

• This will likely justify a sheet production facility in Northern 
California that adds torrefied almond shells into plastic sheets



Current and Future Work
− Optimize properties of torrefied shell-polymer composites

• Polyethylene terephthalate (PET)

− Create commercial prototypes and work with companies
toward commercialization scale 

− Optimize scale-up in the pilot plant
• Test pilot-scale prototype materials from varied

biomass sources 



Conclusions

− Produced composites with high levels of torrefied shells
• Composites had higher modulus and Td, but lower 

strength and elongation
• Some interactions between filler + polymer matrix

− Pilot-scale torrefaction reactor is to be used to provide
consistent samples 



Thank you!



What’s Next
Tuesday, December 5 at 1:45 p.m.
• Common Errors in Orchard Set Up– Room 308-309

• Repositioning Plant-Based Protein – Room 306-307

• The Science and Practice of Intentional Recharge in Almond Orchards –
Room 312-313

• Produce Safety Rule for Farms: How to Comply and What About the 
Grower Exemption? – Room 314



CEUs – New Process
Certified Crop Advisor (CCA)
• Sign in and out of each session you attend. 

• Pickup verification sheet at conclusion of each 
session.

• Repeat this process for each session, and 
each day you with to receive credits.

Pest Control Advisor (PCA), Qualified 
Applicator (QA), Private Applicator (PA)
• Pickup scantron at the start of the day at first 

session you attend; complete form.

• Sign in and out of each session you attend. 

• Pickup verification sheet at conclusion of each 
session.

• Turn in your scantron at the end of the day at 
the last session you attend. 

Sign in sheets and verification sheets are located at the back of 
each session room.
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