

Why a sustainability program?

To document and tell your story!

Need for transparency of production practices in the marketplace

Need for conveying accurate production information to public policy makers and regulatory agencies

Supplier

Why a sustainability program?

To learn about and share practices to improve production efficiencies,

Optimize the efficient use of natural resources (e.g., water, nutrients, energy)

Optimize the efficiency of field operations (e.g., pest management, harvest)

practices/technology

action plan

comparison report

	20	
Fractice or Metric	Your selection	Growers uning this practice
Aerial or satellite photos (e.g. Google Earth) were used to identify potential variations in self- lecture, reliably, or other factors.	Yes	21%
4 Yield maps from the previous crop (almorate or another crop) were used to identify privated variations in soil texture, sainty, or other factors.	Yes	29%
5. A GPS map of sell observabilities using sensing botherways (e.g. PC, Vagath or SIS) was made, and used to identify potential, variations in soil texture, salinity, or other factors.		6%
B Rackhorphs were dup or deep supertone samples were taken (guided by the above and other observed factors in stratege places to determine:	Yes	46%
a texture (percent sand, clay, still or saturation percentage		43%
b compaction layers or other soil stratification	Yes	43%
e salinity	Yes	40%
d pl1	Yes	60%
e sol urgenic matter	Yes	40%
7 Deep ripping slip planting, or tree look backflow pile were dug to address sharrage and/or compaction issues (creterably after first testing for these problems).	Yes	60%
R If suggested by and sampling, such some amended to adjust pH, suggesty, sadeby, etc. during probably development.	Yes	63%
9 Sais were amended with organic matter during orchant development	Yes	44%
10 All water sources were sampled and lab-evaluated for water quality/inspation suitability		45%
11. Rootstocks were selected based on soil texture and dramage conditions as well as potential soil post or disease problems.	Yes	68%
12. The irrigation system was designed to meet or exceed a specific target distribution uniformity.	Yes	69%
 The impation system was designed for the site so that impation sets correspond to soil texture zones and/or topography. 	Yes	63%
14. An economic analysis utilizing the type of information in this section and expected returns was done prior to moving forward with the cacherd development hedevelopment.	Yes	41%
16. Other		
Irrigation Infrastructure & Maintenance - All Systems		
16 What is the impation type for this orchard (not counting systems for frost control?)	Flood	
n 060		21%
b. micro Spinnkler		
c feedh.mow		13%

targeted education

Modules (Self-Assessment)

- Irrigation Management
- Nutrient Management
- Air Quality
- Energy Efficiency
- Pest Management
- Ecosystem Management
- Financial Management
- Workplace and Communities

Nutrient Management

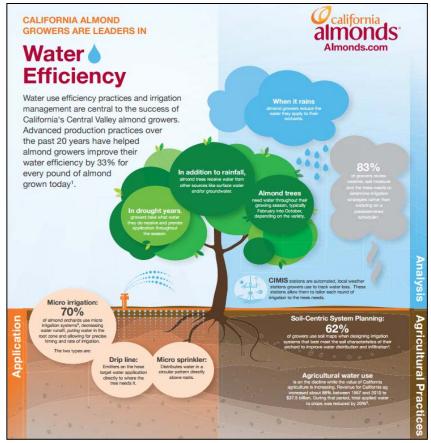
For my orchard, I am using the following practices and/or technologies for maximizing nutrient management efficiency:				I haven't tried it	I have tried it	My current practice	Not applicable
	SOURCE						
5	The following	a. commercial in-organic nitrogen fertilizer					
	sources of nitrogen were utilized in this	b. manure (not recommended for food safety reasons)			Ц		
	orchard in the past	c. compost 🗹					
	year. (Select all that apply):	d. nitrogen-fixing cover crops					
6	If compost, manure, or nitrogen-fixing cover crops were used, their nitrogen contribution to the crop was estimated and used in calculating the total nitrogen applied.						

	Practice or Metric	Your Selection	Use Statewide
	Irrigation Management Module		
	INTRODUCTION AND GENERAL INFORMATION - IRRIGATION MANAGEMENT		
	ORCHARD ESTABLISHMENT		
1	Were you involved in this orchard's establishment?		82.7 %
2	Soil maps (e.g., NRCS soil series or web soil survey) were used to identify potential variations in soil texture, salinity, water holding capacity, or other factors.		61.8 %
3	Aerial or satellite photos (e.g., Google Earth) were used to identify potential variations in soil texture, salinity, or other factors.		46.0 %
4	Yield maps from the previous crop (almonds or another crop) were used to identify potential variations in soil texture, salinity, or other factors.		45.4 %
5	A GPS map of soil characteristics using sensing technology (e.g., EC, Veris® or SIS) was made and used to identify potential variations in soil texture, salinity, or other factors.		15.2 %
6	Backhoe pits were dug or deep auger/core samples were taken (guided by the above and other observed factors) in strategic places to determine:		
	6a. texture (percent sand, clay, silt) or saturation percentage		67.4 %
	6b. compaction layers or other soil stratification		70.9 %
	6c. salinity		63.3 %
	6d. pH		68.3 %
	6e. soil organic matter		60.2 %
7	Deep ripping, slip plowing, or tree hole backhoe pits were dug to address drainage and/or compaction issues (preferably after first testing for these problems).		87.9 %
8	If suggested by soil sampling, soils were amended to adjust pH, sodicity, salinity, etc. during		75.8 %

Participation in Self-Assessment

Individual Participants	1,425
Organizations Represented by Assessments	565
Orchards Assessed	788
Acres Assessed	156,309
Acres Managed by Organizations Represented by Assessments	401,365

2014 Almond Sustainability Report



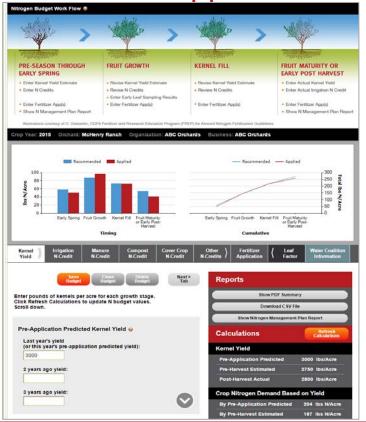
Strategic Communications

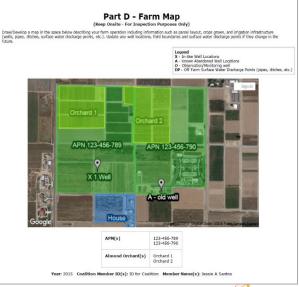
Past Targeted Education Workshops

Series 1: Water and Nutrient Management

NORTH VALLEY	CENTRAL VALLEY	SOUTH VALLEY
February 26 - Oroville Butte County Farm Bureau	March 5 - Modesto Stanislaus County Ag Center	March 12 - Visalia Visalia Convention Center
2580 Feather River Blvd.	3800 Cornucopia Way	303 E. Acequia Ave.
February 27 - Woodland	March 10 - Merced	March 13 - Bakersfield
Hampton Inn & Suites	Hampton Inn & Suites	Kern County Farm &
2060 Freeway Dr.	225 S. Parsons Ave.	Home Advisors
		1031 S. Mount Vernon Ave.

Series 2: Pest & Honey Bee Management


NORTH VALLEY	CENTRAL VALLEY	SOUTH VALLEY
April 6 - Oroville	April 9 - Modesto	March 18 - Bakersfield
Butte County Farm Bureau	Stanislaus County Ag Center	Kern County Farm &
2580 Feather River Blvd.	3800 Cornucopia Way	Home Advisors
		1031 S. Mount Vernon Ave.
April 7 - Woodland	April 14 - Merced	March 19 - Visalia
Norton Hall	Hampton Inn & Suites	Visalia Convention Center
70 Cottonwood St.	225 S. Parsons Ave.	303 E. Acequia Ave.

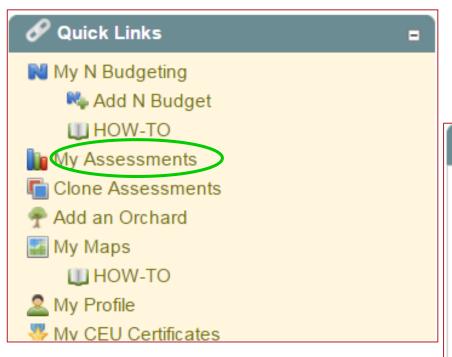


Decision-Support and Compliance Tools

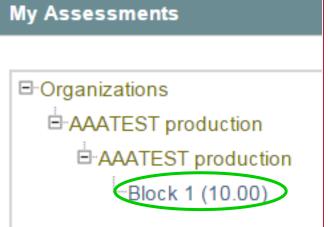
NITROGEN MANAGEMENT PLAN WORKSHEET						
1. Crop Year (Harvested):	2015	4. APN(s)	5. Field(s) ID			
2. Member ID #:	ID for Coalition	000-22-1123	McHenry Ranch			
3. Name:	Jessie A Santos	123-456-478	INICHERITY RANCH			

CROP NITROGEN MANAGE	N APPLICATION	
6. Crop	Almonds	17. Nitrogen Fertiliz
7. Production Unit	Pounds (kernel)	18. Dry/Liquid (lbs/a
8. Projected Yield (Units/Acre)	3000	19. Foliar N (lbs/ac)
9. N Recommended (lbs/ac)	291	20. Organic Materia
10. Acres	22	21. Available N in M (lbs/ac estimate)
Post Production	22. Total N Applied	
11. Actual Yield (Units/Acre)	2800	23. Nitrogen Credit

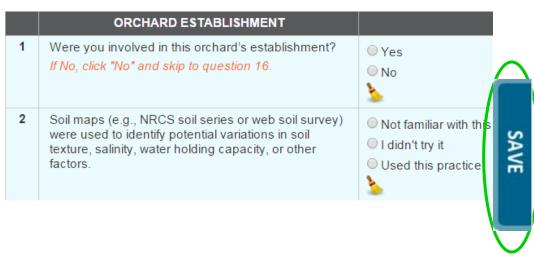
Login at www.sustainablealmondgrowing.org



Home Page

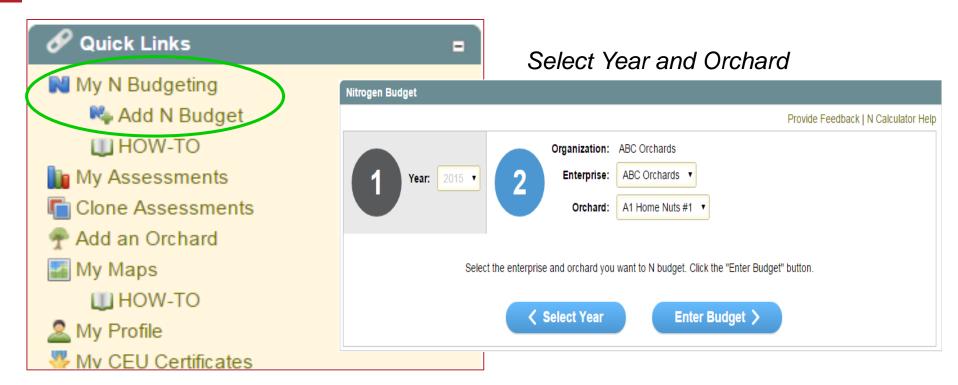


Completing Assessments



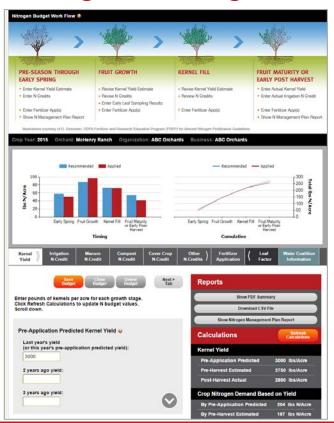
Select Orchard or Facility

Entering Responses and Comparing Results

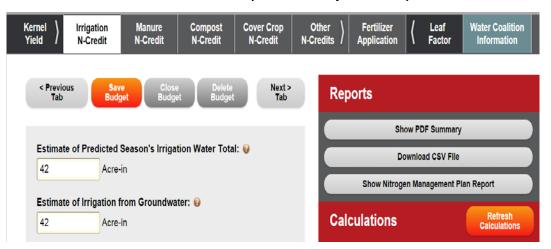

Name: Block 1 Type: Orchard

Organization: AAATEST production Enterprise: AAATEST production

	Practice or Metric	Your Selection	Use Statewide
	Irrigation Management Module		
	INTRODUCTION AND GENERAL INFORMATION - IRRIGATION MANAGEMENT		
	ORCHARD ESTABLISHMENT		
1	Were you involved in this orchard's establishment?		82.7 %
2	Soil maps (e.g., NRCS soil series or web soil survey) were used to identify potential variations in soil texture, salinity, water holding capacity, or other factors.		61.8 %
3	Aerial or satellite photos (e.g., Google Earth) were used to identify potential variations in soil texture, salinity, or other factors.		46.0 %
4	Yield maps from the previous crop (almonds or another crop) were used to identify potential variations in soil texture, salinity, or other factors.		45.4 %
5	A GPS map of soil characteristics using sensing technology (e.g., EC, Veris® or SIS) was made and used to identify potential variations in soil texture, salinity, or other factors.		15.2 %
6	Backhoe pits were dug or deep auger/core samples were taken (guided by the above and other observed factors) in strategic places to determine:		
	6a. texture (percent sand, clay, silt) or saturation percentage		67.4 %
	6b. compaction layers or other soil stratification		70.9 %
	6c. salinity		63.3 %
	6d. pH		68.3 %
	Se soil organic matter		60.2 %



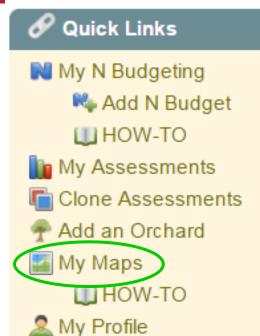
Nitrogen Calculator and Budgets



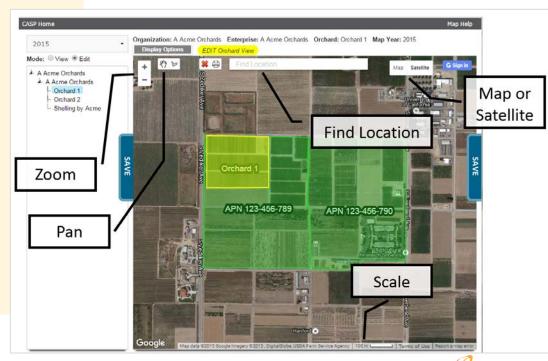
Using the Nitrogen Calculator

Enter Data (Save Optional)

Nitrogen Calculator and ILRP Nitrogen Management Plans

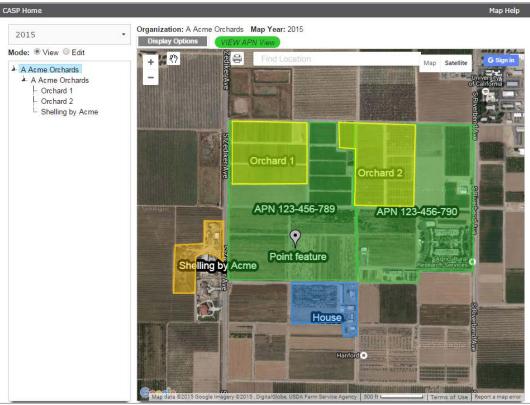

NITROGEN MANAGEMENT PLAN WORKSHEET

1. Crop Year (Harvested):	2015	4. APN(s)	5. Field(s) ID
2. Member ID #:	ID for Coalition	000-22-1123	Mel Janny Daneh
3. Name:	Jessie A Santos	123-456-478	McHenry Ranch

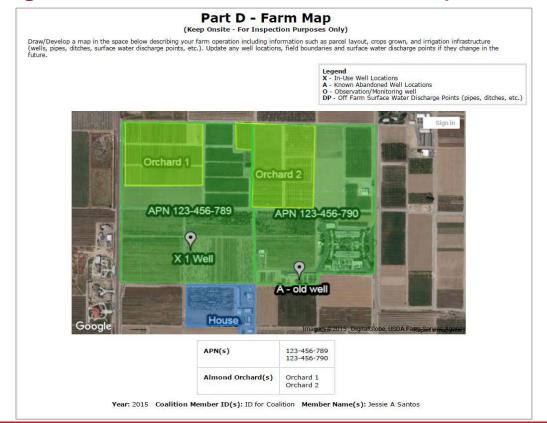

CROP NITROGEN MANAGEMENT PLANNING		N APPLICATIONS/CREDITS	15. Recommended / Planned N	16. Actual N
6. Crop	Almonds	17. Nitrogen Fertilizers		
7. Production Unit	Pounds (kernel)	18. Dry/Liquid (lbs/ac)	290	258
8. Projected Yield (Units/Acre)	3000	19. Foliar N (lbs/ac) 0 0		0
9. N Recommended (lbs/ac)	291	20. Organic Material N		
10. Acres	22	21. Available N in Manure/Compost (lbs/ac estimate)	0	0
Post Production A	ctuals	22. Total N Applied (lbs per acre)	290	258
11. Actual Yield (Units/Acre)	2800	23. Nitrogen Credits (est)		

Farm Mapping

Mv CEU Certificates



ы


Map APNs, Orchards, Facilities and Ad Hoc Features

Farm Mapping and ILRP Part D – Farm Map

What's Next?

- Outreach to increase awareness and use of CASP features and tools.
- Continued use of CASP results for beneficial correspondence with media, buyers and regulators.
- Linking CASP and findings to grower incentives.
- Additional online decision-support tools (e.g., irrigation).
- Additional online decision-support to a support to a supp

For help or more information:

CASP Helpdesk: CASP@SureHarvest.com or (831) 477-7797

ABC: Jenny Nicolau at inicolau@almondboard.com or (209) 343-3248

