

Spray Coverage: The Missing Link in PM

The Almond Conference

Spraying Basics: Safe, Effective, Efficient and Sustainable.

Franz Niederholzer U.C. Farm Advisor Colusa/Sutter/Yuba Counties

Objectives In Almond Spraying

Slide concept: Dr. Ken Giles, UC Davis

Talk Objectives

- Review basic spraying terms and conditions
- Review optimization of conventional airblast sprayers for pest and drift control in almonds

A. Landers, Cornell Univ.

NDSU Agriculture Communication

Droplet	drops/cm ²	Fall time
diameter	from 1 liter	from 10'
(µm)	volume	height
10	19,099	17 min.
20	2387	240 sec
50	153	40 sec
100	19	11 sec
200		
200	2.4	4 sec
500	<0.5	2 sec

	68°F 80% RH	86°F 50% RH
Droplet size (initial)	Time to dry	Time to dry
50 μm	14 _{sec}	4 sec
100 μm	57 sec	16 sec
200 μm	227 sec	65 sec

G.A. Matthews, Pesticide Application Methods 3rd ed.

Where to start for good coverage?

- D4-6
- 25 (2 hole) swirl plates
- 125 150 psi

Where to start for drift control?

- D8-12
- D25 (2 hole) swirl plates
- 125 150 psi
- Less sprayer fan air?
- More spray volume to compensate for larger droplets?

Practices that improve pesticide deposition on the target crop also reduce potential for pesticide drift and pesticide runoff from the orchard.

Calibration is an important legal and logistical step.

Basic Calibration

GPA = GPM/APM

GPA = Spray rate Land rate

Accurate calibration does not insure effective coverage.

Basic equipment adjustments for spray targeting

- Air flow (direction/volume)
- Droplet size/spray volume
- Nozzle orientation

Air blast sprayers are <u>air-</u> <u>carrier</u> sprayers

Sufficient air volume is needed to move the spray thought out the target canopy...

Air blast sprayers are <u>air-</u> <u>carrier</u> sprayers

Sufficient air volume is needed to move the spray thought out the target canopy... but no further

Spray Volume

35 gpa at 3 mph

-2 65

A. Landers, Cornell Univ.

Loss with Height Variable Degradation

150 gpa Better than 100 gpa

Just going from 1.8 to 2.2 mph reduced volume by 32%

Nozzle adjustment/placement

How do you check for proper tree coverage?

- Water
- Surround[™]
- Water sensitive paper
- Food coloring and photographic paper

Review

- Proper calibration (dial-in GPA)
- Balanced air delivery
 - -Light on air early in the season
 - -Full air as the canopy closes
- Sufficient volume to give good coverage once adequate carrier air is delivered
- Nozzle selection and orientation to effectively and efficiently target the canopy

Evaluation of Insecticide Efficacy and Spray Coverage in Mature Almond Orchards – Kern County

Bradley S. Higbee bradh@paramountfarming.com Paramount Farming Co. Bakersfield, CA, 93306

Navel Orangeworm Biology

- Pyralidae
- Highly polyphagous
- Primary pest of almonds and pistachios
- High dispersal capacity
- Multivoltine
- Oviposition and feeding directly on nut

Insecticide Trials at Paramount

Trials

- 2 3 per Year
- 20 acre plot size
- 3 or 4 Replicates
- Testing Pyrethroids and Reduced Risk Chemistries

2009-2011 Insecticide Trials

NOW Insectic	ide control trial	- Almond - 2009				
Targets	100-150 DD 1st	100-250 DD 2nd (1% HS)	100-200 DD 3rd			
Trtmnt	April/May	HS June	Post HS July/Aug			
1	1 No Treatments					
2		Brigade - 100gals/ac				
3		Brigade - 200gals/ac				
4		Intrepid	Brigade			
5		Brigade	Intrepid			
6		Belt	Belt			
7		Altacor	Altacor			
8	Intrepid	Intrepid	Intrepid			
Estimated date	Mar 18- Apr 14	June 7 - July 3	July 25 - Aug 8			
Actual date	4/10	7/3	7/23			
Deg days	160	1521	2032			
Biofix	15-Mar					

Single Application Timing Trial 2012

NOW Insectic	N Insecticide control trial 1 - Almond - 2012 R3400, 3410, 3470					
Targets	1st HS/1100 do	10%+HS 1600 dd				
Treatments	Early HS	HS	Late-HS			
1	No Treatments					
2	Brigade+Intrepid					
3		Brigade+Intrepid				
4			Brigade+Intrepid			
5		Brigade				
6		Intrepid				
7		Belt				
8		Altacor				
Estimated date	June 10 - 25	June 25 - July 15	July 25 - Aug 8			
Actual date	June 23	July 7	Aug 1			
Deg days	1230	1500	2105			
Biofix	7-Mar					

Can we improve performance?

- Trials evaluating efficacy of reduced risk (primarily ovi-larvicides) insecticides typically result in a maximum of 50-60% damage reduction in almonds vs NOW
- These same products have better results in other crop-pest systems (such as Apples/codling moth)
- Target site for residues is the almond
- Suspected problems:
 - Canopy density
 - Spatiotemporal dynamics of nut split/susceptibility
- Evaluate spray coverage, identify weaknesses

Spray Coverage Trials 2010-2012 Orchard Characteristics

- Nonpareil and Monterey varieties, in 1:1 ratio, planted in alternating rows, 21 ft (m) x 24 ft
- Orchard planted in 1999 (12 yrs at time of study in 2010), hedged in 2009 and 2012
- Mean distance between tree canopies in drive row = 3.1 ft (0.5 – 4 ft)
- Mean height above ground (measured to highest nut), NP = 20.5 ft, range 19-24 ft; Mo = 15.8 ft, range 14.5-18 ft
- Canopy radius at base, NP = 9.5 ft (19 ft diameter)

Overview Trials conducted in 2010, 2011 and 2012

- 8 treatments (including control)- using chloroantraniliprole (Altacor®) @ 4.5 oz/ac along with surfactant (Li-700) @ 0.125% (v/v) in 2010, 0.25% (v/v) in 2011, 0.08% (v/v) in 2012 and Fujimite @ 2 pts/ac all years – <u>One application at HS</u>
- 8 ac plots, 3 replicates, Nonpareil/Monterey varietal mix
- Sampling:
 - Spray cards water sensitive papers (WSP) (26 x 76mm = 1" x 3") 2 trees/plot, 6 trees/treatment digital analysis, CIAS 2.0
 - Hull residues LC//MS/MS 2 trees/plot, 6 trees/treatment

Harvest samples – evaluate NOW infestation

- Nut samples from 2 trees/plot at 4 vertical heights just prior to harvest –"Tree samples"
- Nut samples from ground (6 trees /plot) after shaking "Ground samples"

WSP and Nut Residue Sampling Positions

6%

Sprayer Technology

2010/2011 Conclusions

- Coverage and residue deposition tended to be greater at slower speeds by 30-40%.
- The **best treatments** in these tests only resulted in about **50% coverage overall**.
- Electrostatic treatments did not perform well on the WSPs (small droplet size is a suspected), but they were among the best in residue deposition at full volume and delivered surprising residues at high speeds/low volumes.
- Tower sprayers had the most consistent coverage and residues across vertical levels
- For the conventional ground-based sprayers, most of the residues where deposited in the lower half of the tree while the highest levels of NOW infestation occurred in the upper half of the tree.
- None of these spray approaches resulted in the coverage required for optimum performance of ovi-larvicidal products. However, we plan to address these shortcomings and hope to improve this performance in our 2012 trial.

Damage Reductions from 2010 Trial

B. Higbee, Paramount Farming Co.

2012 Coverage Trial 2 Applications of Altacor® - 6/29 & 7/25

NOW Spray	R323			(starting from top of one side)		
Trtmnt	Manufacturer	Model	mph	gals/ac	Core	Nozzles
1	AOF (2010) 2.5	D-2/40 500	2.5	200	45	#7 x 8, #6 x 1
2	AOF (2010) 2.0	D-2/40 500	2	200	45	#6 x 8, #5 x 1
3	Hollow Cone	D-2/40 500	2.5	200	45	#4-x1, #10x3, #8x3, #6x2
4	Full Cone	D-2/40 500	2.5	200	35 (D5 only)	#TG5x5, #D5x4
5	Flat Fan	D-2/40 500	2.5	200		#8010Ex5, #8008Ex1, #8006Ex3
*6	AOF 2 boom	D-2/40 500	2.5	200	45x4, 25x5	#7-#7 x 4, #4-#4 x 2, #3-#3 x3
7	Prog Ag 150	2650 16' Tower	3	150		3 manifolds, 3/8' air shear
**8	Control	Miticide only				same as #1
	* 2 booms **Treat first					

2650 w/ 15 ft tower

Water Sensitive Papers

Altacor® Residues

Level

Almond Spray Coverage Trial-2012 NOW Infested nuts from Tree/level samples - NP % Reduction relative to controls

■ AOF 2.5 ■ AOF 2.0 ■ Hollow ■ Full ■ Flat ■ AOF 2 boom ■ PA 150

100 ¬

Upper Canopy - 5-6 m (14-18+ ft)

Almond Spray Coverage Trial-2012 NOW Infested nuts from Tree/level samples - NP

Almond Spray Coverage Trial-2012 NOW Infested nuts from ground samples - NP

Altacor Spray Coverage Trial-2012 NOW Infested nuts from ground samples - Mo

Almond Insecticide Spray Coverage Trial 2012

Tentative, unofficial and possibly meaningless rankings

8 points for top performer, 2 for bottom in each category

	Pooled ranking										
					Points					No WSP fo	or Prog Ag
	Treatment	Residues	<u>WSPs</u>	Tree-Infest	<u>Grnd Mo i</u>	Grnd-NP Inf	Pole WSP	<u>Total</u>	<u>Rank</u>	<u>Avg</u>	
6	AOF 2 boom	5	8	2	8	4	8	35	1	5.8	1
4	Full Cone	6	6	5	7	5	4	33	2	5.5	2
5	Flat Fan	7	4	3	6	6	7	33	2	5.5	2
3	Hollow Cone	2	3	8	5	8	5	31	4	5.2	5
1	AOF (2010) 2.5	3	7	7	2	3	6	28	5	4.7	6
7	Prog Ag 150	8	2	4	3	7	2	26	6	5.5	2
2	AOF (2010) 2.0	4	5	6	4	2	3	24	7	4.0	7

- Two application programs make a big difference
- Incremental improvements made with 2 booms, full cone and hollow cone nozzles
- Trends among metrics not consistent
- Maybe coverage is not the driving force?
- Combine with aerial applications?

Acknowledgements

Dupont Crop Protection – Ray Kazmarcyck Paramount Farming Co. PFC Entomology Research Group

Technical assistance: Ashlee Pedro Gabrielle Chrisco Lori Smith Allie Ruettgers Johnny Magana Eddie Placentia

Fernando Higuera Emmanuel Higuera Kyle Lemucchi Vince Phillips

Daniel Vargas

Yogi Berra

"In theory, there is no difference between theory and practice. But in practice, there is."

Orchard Spraying – New Technologies and Outlook

Ken Giles Bio. & Ag. Engineering Dept. UC Davis

Droplet size effects

Need for proper nozzle placement and adjustment

Importance of air volume for displacing canopy

Balance between runoff, drift and efficacy

Top Priority – calibration, ground speed, air speed and <u>monitoring</u> of current technology.

Before buying new technology, give your existing technology the same attention you would give a new piece of equipment.

New technologies require more attention, especially at first.

Spray Drift

Miller *et al.* (2003) concluded: "Most of the spray movement out of the tree canopy was in the spaces between trees..."

"One way to reduce drift may be to turn off the spray between tree crowns..."

EFRAY	CAPT
TASK P	DAGE

Orchard Spray Deposit Accountability

Case Study Ultrasonic measurement of trees for control of spray sections.

Savings depends on orchard age, size, gaps, etc.

Some trials have shown 50 - 70 % savings.

Field test – dormant almonds

Nozzle configuration was "center-weighted" spray

0.5 kg/ha Lorsban (chlopyrifos)

Durand-Wayland AF500 Smart Sprayer

Field test – sampling

Field test – sampling

Use of system had no significant effect on target deposition

Plum orchard -

- 15% reduction in a.i. rate
- 5% less ground deposit

Walnut orchard -

- 45% reduction in a.i. rate
- 58% less ground deposit

Almond orchard -

- 22% reduction in a.i. rate
- 71% less ground deposit

Based on these results, a run-off experiment was conducted in a 40 acre prune orchard

Performance

Spray Savings: 39% Ground Deposit: - 54% Diazinon in Runoff: - 44%

University of California Production Costs Dept. of Agricultural and Resources Economics - Cost and Return Studies

Sacramento Valley Almonds

San Joaquin Almonds

Annual cost of materials for disease and insect sprays

- \$233 Sacramento Valley Almonds
- \$203 San Joaquin Almonds

Variable application cost (labor and fuel) = \$9.50 - 10.00 / acre

Assuming 20% material savings and 10% application cost savings, we can calculate "break even acreage"

160 acres

\$15,000 investment and <u>2 year</u> payback period

Create air and fluid interaction among fans to generate turbulence that could improve uniformity and decrease drift

Fan Interaction: 70/30 Configuration

Trial Configurations:

		Upper Fan				
	Axial Fan Speed	Nozzle	Axial Fan	Upper Fans	Upper Fan	Axial Fans
Trial	(Low/High/Off)	Count	Nozzle Count	Speed (%)	Fluid (%)	Fluid (%)
Control	Low	0	8	0	0	100
1	Low	0	8	70	0	100
2	Low	8	8	70	50	50
70/30	Low	8	8	70	70	30

Control vs. 70/30

Upper Canopy

Middle Canopy

Lower Canopy

Naval Orange Worm – 1 Day After Treatment

Treatment	Survival	Reduction	Eggs
High			
Control	$33.30\% \pm 47.10$ A		2,130
Conventional	$22.00\% \pm 41.40 \text{ B}$	33.93%	3,930
Multifan	$12.40\% \pm 33.00$ C	62.76%	2,540
Low			
Control	$15.90\% \pm 36.60$ A		1,990
Conventional	$1.70\% \pm 12.90 \text{ B}$	89.31%	2,250
Multifan	$7.90\% \pm 27.00 \text{ C}$	50.31%	1,930

Improving Deposition / Control in Tops growing

Improving Deposition / Control in Tops growing

Questions