

Insect + Mite Management Updates

Thank you Silver Sponsor

Insect + Mite Management Updates

Presenters:

David Haviland, UCCE Kern County

Frank Zalom, Entomology, UC Davis

Franz Niederholzer, UCCE Sutter/Yuba Counties

Gabriele Ludwig, ABC

Arthropod IPM Opportunities David Haviland, UC Cooperative Extension, Kern County

Arthropod IPM Opportunities growing Would you tell me, please, which way Alice: I ought to go from here? **Cheshire Cat:** That depends a good deal on where you want to get to. I don't much care where. Alice: Then it doesn't much matter which Cheshire Cat: way you go.

"Alice's Adventures in Wonderland" Lewis Carol, 1866

Where do you want to go?

Healthy, nutritious, flavorful, affordable almonds

Minimal insect damage

Minimal management costs

- Monitoring and decision-making
- Costs of mitigation practices

Minimal pesticide use

Negligible risk to air/water quality

Negligible risk to field workers

Negligible risk to consumers

10 years ago

Currently

Navel Orangeworm

Sanitation, early harvest, hard-shelled varieties	Sanitation, early harvest, hard- shelled varieties		
Guthion-based systems Old generation pyrethroids	IGRs, Diamides, Spinosyns New generation pyrethroids		
	Mating Disruption		
Spider Mites			
Preventative systems based on Agri-mek Follow-up defoliation prevention with Omite, Vendex, Nexter	Threshold-based systems based on abamectin and growth regulators Follow-up as needed with Zeal,		
	Envidor, Fujimite, Acramite		

10 years ago

Currently

Peach Twig Borer		
Dormant oil, plus OPs,	Dormant oil plus	
carbamates, or pyrethroids	IGRs, diamides, spinosyns as well	
Bloom/May sprays as	as broad spectrum products	
needed (broad spec.)	Bloom/May sprays	
San Jose Scale		
Dormant oil, plus OPs,	Dormant oil	
carbamates, or pyrethroids	Heavy reliance on parasitoids	
Low to moderate reliance on	Growth regulators if needed every	
parasitoids	2-3 years or longer	

Balanced Almond Orchard's Possible

- **PTB- dormant oil + reduced-risk insecticides**
- NOW- sanitation, early harvest, hard shell varieties, reduced-risk insecticides, mating disruption
- San Jose Scale- parasitoids, dormant oil, reduced-risk growth regulator every few years
- Mites- scouting and treatments as needed
- Ants- reduced-risk bait programs

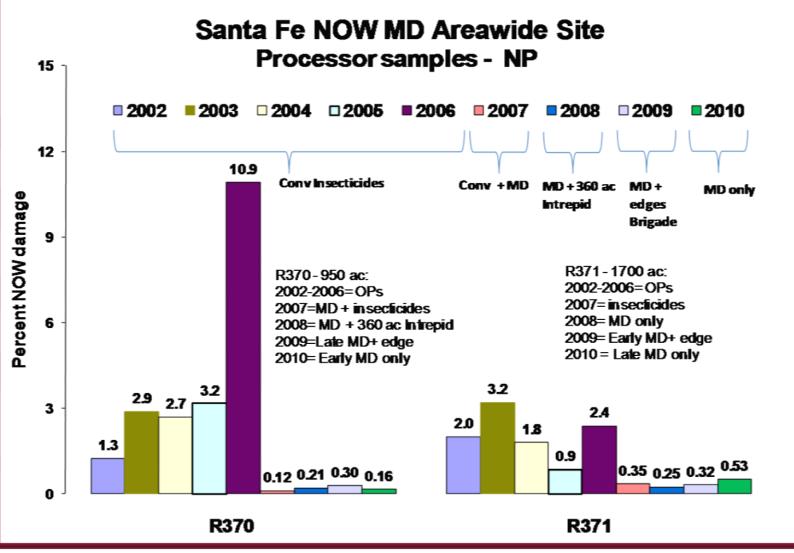
Why so many opportunities/tools?

- Long history of industry investment in research
- History of collaboration between almond producers, University and USDA researchers, manufacturers and regulatory agencies.
- Grower willingness to adopt new practice
- Lack of new exotic pests
- Lack of treatment requirements for export

The IPM toolbox is getting full...

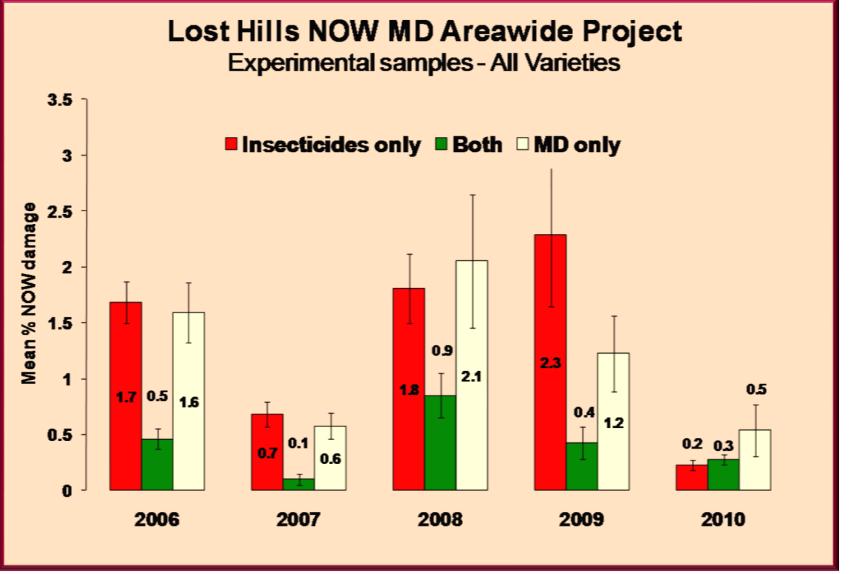
The IPM toolbox is getting full...

...but tools are only valuable if they are used.

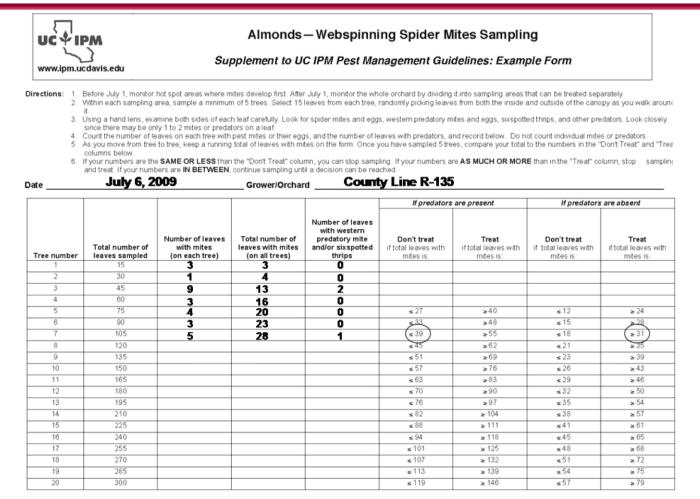


Mating Disruption for NOW

- Based on the use of puffers
- Long-term strategy requiring a phase-in period
- Effectiveness increases with increased acreages
- Still relatively expensive, but...
- proving to be effective
- potential to improve predictability
- avoid issues with treatment timing/equipment
- improved worker safety
- environmentalist/green stamp of approval
- prices often dictated by volume

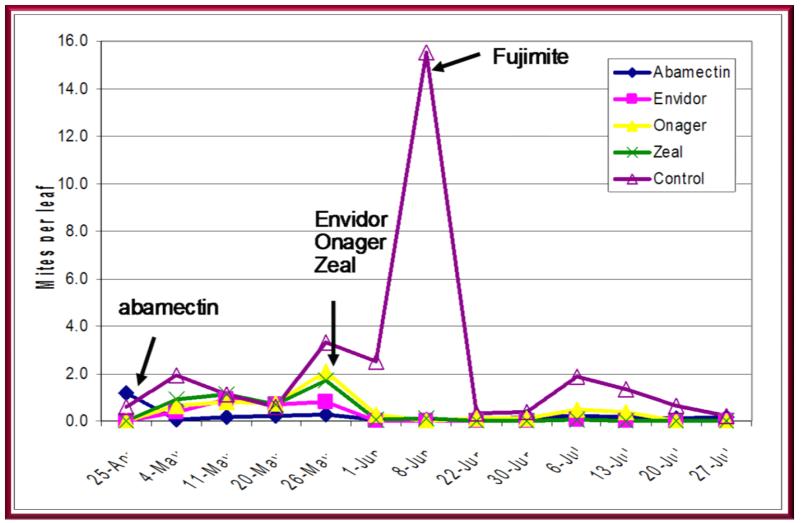


Source: Higbee and Burkes, 2010- AIC 2010 Poster



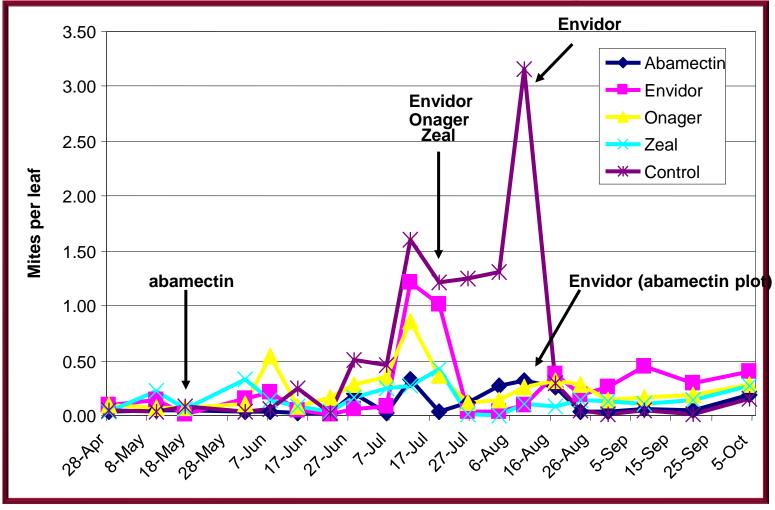
Source: Higbee and Burkes, 2010- AIC 2010 Poster

Presence/Absence sampling for spider mites



(23 March 2009) Print copies of this form at www.ipm.ucdavis.edu/FORMS/

Produced by the UC Statewide IPM Program


2009 Trials Kern Co- 17 ac. plots

Source: Haviland, 2010- AIC 2010 Poster

2010 Trials Kern Co- 17 ac. plots

Source: Haviland, 2010- AIC 2010 Poster

Two roads diverged in a wood, and I, I took the one less traveled by, And that has made all the difference *-Robert Frost*

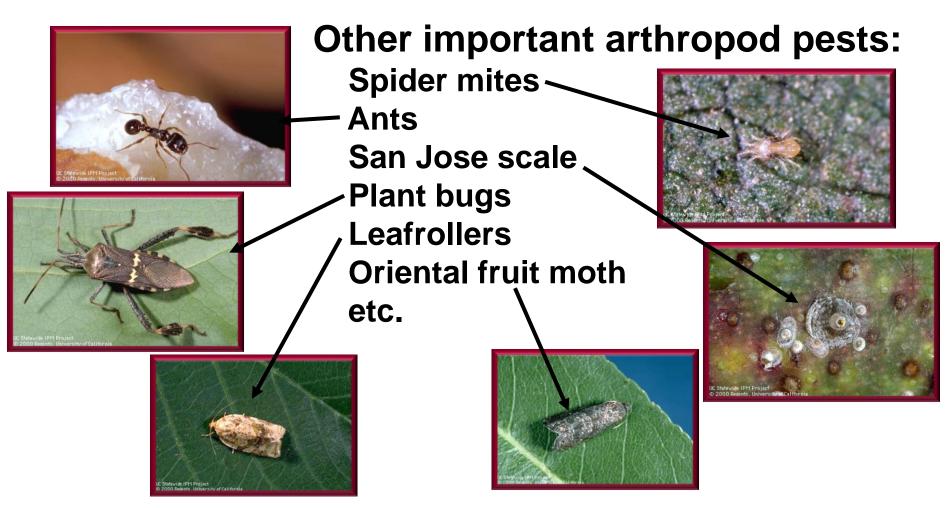
Source: The Road Not Taken", 1916

When you come to a fork in the road, take it! -Yogi Berra

Source: Inspiration and Wisdom from One of Baseball's Greatest Heroes, Hyperion, 2002

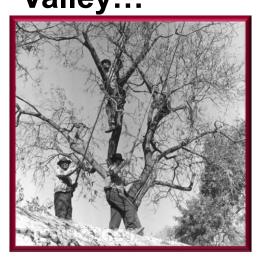
Thank You

Arthropod IPM Opportunities Frank Zalom, Dept. of Entomology, UC Davis


Effective but sustainable management of the key pest(s) of any crop is one of the most important factors in an arthropod IPM program...

- A 'key pest' is one that requires some sort of intervention almost every year
- What is a 'key pest' often depends on location

Key insect pests: — Navel orangeworm Peach twig borer —



Million pound: > 100

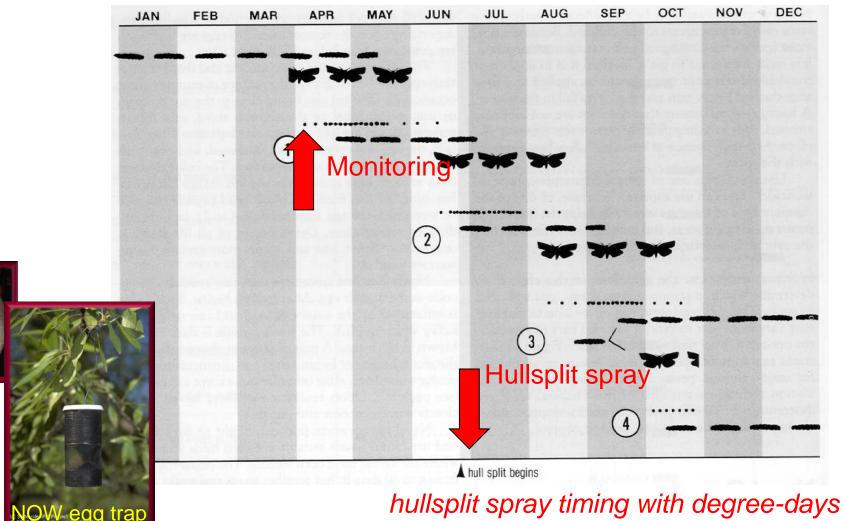
Stanislaus

Madora

Navel orangeworm became the key pest of almonds in the late 1960s, probably because of a rapid change in mechanical harvesting practices and increased plantings in the central and southern San Joaquin Valley...

More nuts remained on the tree after harvest.

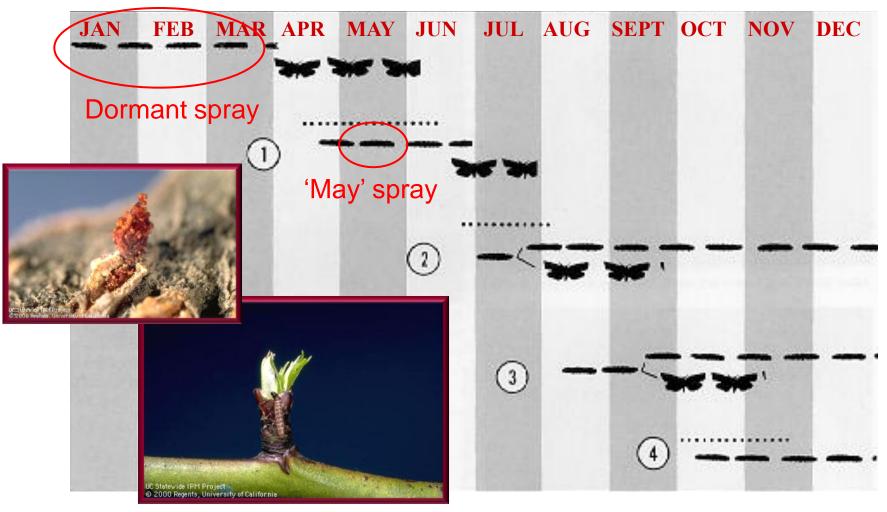
IPM for NOW is based upon cultural controls



Chemical control further lowers NOW damage

Prior to the 1960s, peach twig borer was the 'key pest' of California almonds, and insecticide sprays were applied annually for its control...

Peach twig borer Anarsia lineatella



Damage by peach twig borer (up to 10% in some years) led many growers to apply insecticides in May, *but*... ...depending on the insecticides applied, spider mite populations often increased to damaging levels.

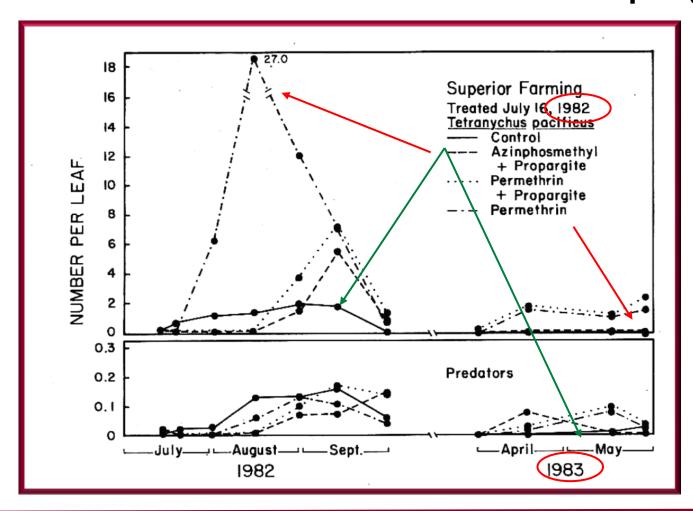
The peach twig borer's seasonal cycle is amenable to treatment during the dormant season, and in 'May'...

A 1985 grower survey indicated that <u>93%</u> of almond growers used an organophosphate and oil spray during orchard dormancy for peach twig borer control and <u>78%</u> in May.

Broad spectrum pesticides like orgranophosphates and pyrethroids applied in May disrupt natural enemies of spider mites, scales and other insects, and were not recommended in an IPM Program.

Predatory mite feeding on spider mite

Runoff of organophosphates following dormant sprays became a concern to water agencies starting about 1990.


Between 1985 and 1999, growers using 'May' sprays dropped from <u>78% to 22%</u>, and dormant sprays dropped from <u>93% to 66%</u>.

Starting in the 1990s, more growers were using pyrethroids (Asana, Pounce and Ambush) as dormant sprays and hullsplit sprays.

Now pyrethroids in waterways are also a concern.

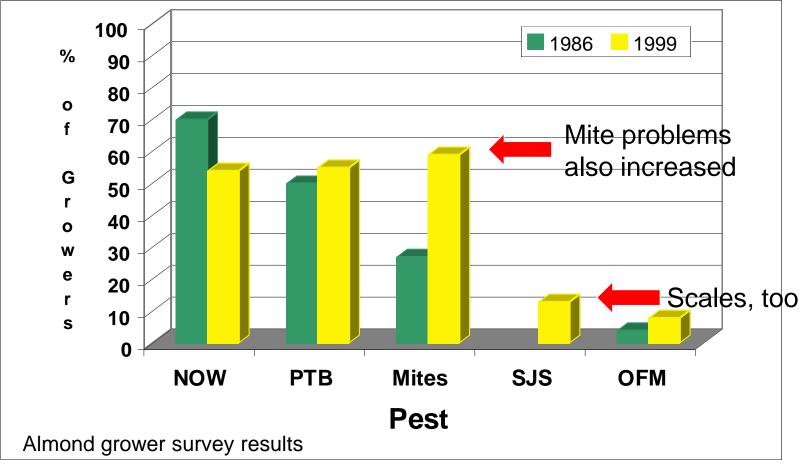
Spider mites increase following inseason applications of pyrethroids... ...even in the next Spring.

Predatory mites are reduced by persistent residues of pyrethroids...

Percent survival of *G. occidentalis* on pyrethroid treated almond twigs ~7 months after a dormant application

	Percent survival corrected for control mortality		
Pesticide and timing	$\frac{101 \text{ control}}{24 \text{ hrs}^1}$	48 hrs ²	
Untreated	100.0 c	100.0 c	
Esfenvalerate dormant	19.6 a	8.4 a	
Permethrin dormant	53.6 b	48.1 b	

Treatments applied 2/3/95


Bark samples collected 8/24/95

Treatment means followed by the same letter do not differ significantly (p<0.05) when compared by Fishers protected LSD. ¹ F = 8.85, df = 8, p < 0.0001 ² F = 8.36, df = 8, p < 0.0001

Pyrethroid use as both dormant and inseason sprays began to increase during the 1990s...

Grower perception of insects and mites as problems requiring management

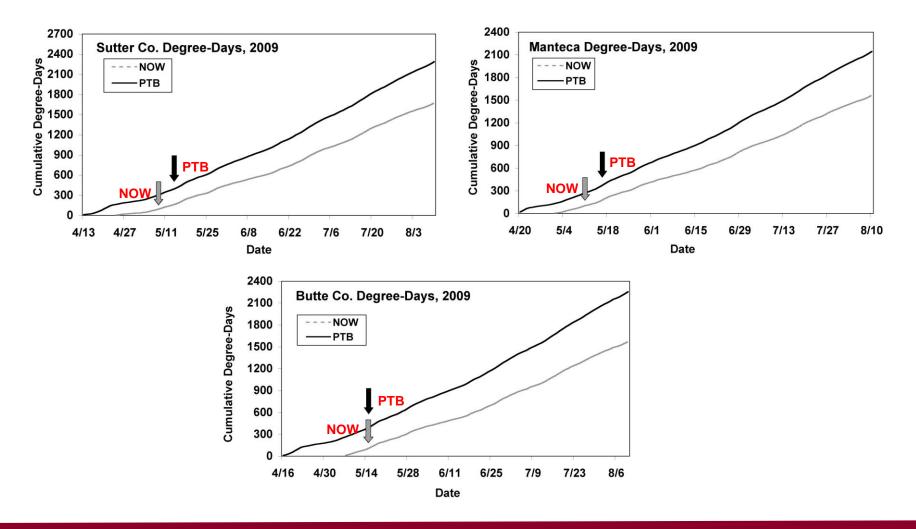
New products are being registered for NOW and PTB control that offer alternatives to organophosphates and pyrethroids...

- Some are presumably less toxic to natural enemies...
 - ... useful to manage insecticide resistance
 - Can they be used as 'May' sprays to replace dormant sprays and to target both NOW and PTB?

Some products registered for NOW and PTB control...

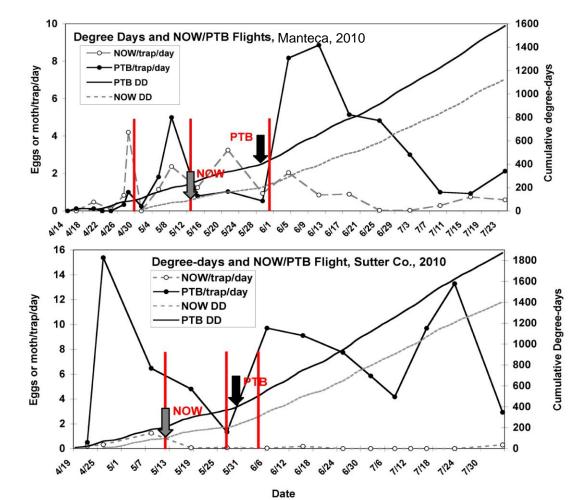
IRAC #	Chemical sub-group	Chemical(s)	Product(s)	Primary site of action
1b	Organophosphates	Chlorpyrifos, Phosmet	Lorsban, Imidan	Acetylcholinesterase inhibitors
3	Pyrethroids	Bifenthrin,	Brigade, Bifenture, Athena*,	Sodium channel modulators
		Cyfluthrin, Lamda-cyhalothrin,	Baythrioid, Warrior, Lambda-Cy, Volium Express*,	
		Esfenvalerate, Permethrin,	Asana, Ambush, Pounce,	
4a	Neonicotinoids	Zeta-cypermethrin Acetamiprid	Mustang Assail	Nicotinic acetylcholine
70	Recifications	Automptio	Augun	receptor allosteric agonists
5	Spinosyns	Spinetoram, Spinosad	Delegate Entrust, Success	Nicotinic acetylcholine receptor allosteric activators

Arthropod IPM Opportunities


Some products registered for NOW and PTB control...

IRAC #	Chemical sub-group	Chemical(s)	Product(s)	Primary site of action
6	Avermectins	Emamectin benzoate	Proclaim	Chloride channel actovators
11	Bacillus thuringiensis	Bacillus thuringiensis		Microbial disruptors of insect midgut membranes
15	Benzoylureas	Diflubenzuron	Dimilin	Inhibitors of chitin biosynthesis, type 0
18	Diacylhydrazines	Methoxyfenozide, Tebufenozide	Intrepid Confirm	Ecdysone receptor agonists
28	Diamides	Flubendiamide,	Belt, Tourismo*,	Ryanodine receptor agonists
		Chlornitraniliprole	Altacor	

'May' Sprays?


Cumulative degree-days from NOW and PTB biofix dates and recommended May spray timing, 2009

Cumulative degree-days from NOW and PTB biofix dates and recommended May spray timing, 2010

Proportion of navel orangeworm infested mummies, Manteca, 2010

					Proportion
		Rate			infested nuts
Treatment	Chemical	(form/ac)	Date	DD	Mean ± SD ¹
Control (water)			5/13	99 NOW	0.14 ± 0.1 A
Belt ²	flubendiamide	4.0 oz	5/13	99 NOW	0.01 ± 0.0 B
Tourismo ²	flubendiamide, buprofezin	14.0 oz	5/13	99 NOW	0.01 ± 0.0 B
Intrepid 2F ³	methoxyfenozide	16 oz	4/30	0 NOW	0.00 ± 0.0 B
Intrepid 2F ³	methoxyfenozide	16 oz	5/13	99 NOW	0.03 ± 0.1 B
Intrepid 2F ³	methoxyfenozide	16 oz	5/31	441 PTB	0.02 ± 0.0 B
Delegate ³	spinetoram	6.4 oz	4/30	0 NOW	0.01 ± 0.0 B
✓ Delegate ³	spinetoram	6.4 oz	5/13	99 NOW	0.01 ± 0.0 B
L Delegate ³	spinetoram	6.4 oz	5/31	441 PTB	0.01 ± 0.0 B
Altacor 35WG ³	chlornitraniliprole	4.0 oz	4/30	0 NOW	0.00 ± 0.0 B
\prec Altacor 35WG ³	chlornitraniliprole	4.0 oz	5/13	99 NOW	0.02 ± 0.0 B
Altacor 35WG ³	chlornitraniliprole	4.0 oz	5/31	441 PTB	0.02 ± 0.0 B
Proclaim	emamectin benzoate	4.0 oz	5/13	99 NOW	0.01 ± 0.0 B
Assail 30SG ²	acetamiprid	6.4 oz	5/13	99 NOW	0.10 ± 0.1 A
Tourismo +	flubendiamide, buprofezin + lamda-	14.0 oz			
Warrior	cyhalothrin	+ 5 oz	5/13	99 NOW	0.00 ± 0.0 B
Athena EW ²	bifenthrin, abamectin	27.2 oz	5/13	99 NOW	0.01 ± 0.0 B
Voliam Xpress	lamda-cyhalothrin, chlorantraniliprole	7.0 oz	5/13	99 NOW	0.01 ± 0.0 B
Brigade 10WP	bifenthrin	0.5 lb	5/13	99 NOW	0.01 ± 0.0 B
Bifenture 10DF ²	bifenthrin	16 oz	5/13	99 NOW	0.00 ± 0.0 B
Lambda-Cy 1EC	lambda-cyhalothrin	5.0 oz	5/13	99 NOW	0.00 ± 0.0 B

ANOV statistics, F=7.5143; df=19, 223; P<0.0001

¹ Means followed by the same letter do not differ significantly at *P*=0.05 by Student's t-test.

 2 Mixed with Dyne-Amic at 0.25% v/v

 3 Mixed with Induce at 1.0% v/v

Mean (+SD) peach twig borer shoot strikes per tree, Sutter, 2010

					Shoot strikes/tree			
Treatment	Chemical	Date	DD	Mean ± SD ¹				
untreated					10.4 ± 2.6 A			
Belt ²	flubendiamide	4.0 oz	5/28	376	3.0 ± 2.4 EFG			
Tourismo ²	flubendiamide, buprofezine	10 oz	5/28	376	3.8 ± 1.5 DEFG			
Tourismo ²	flubendiamide, buprofezine	14 oz	5/28	376	2.5 ± 1.6 EFG			
Intrepid 2F ³	methoxyfenozide	16 oz	5/12	211	8.1 ± 3.8 B			
\prec Intrepid 2F ³	methoxyfenozide	16 oz	5/28	376	8.7 ± 5.1 AB			
Intrepid 2F ³	methoxyfenozide	16 oz	6/4	507	6.8 ± 4.3 BCD			
Delegate ³	spinetoram	6.4 oz	5/12	211	1.5 ± 1.4 G			
✓ Delegate ³	spinetoram	6.4 oz	5/28	376	1.7 ± 2.3 FG			
Delegate ³	spinetoram	7 oz	6/4	507	1.2 ± 1.0 G			
Altacor 35WG ³	chlornitraniliprole	4.0 oz	5/12	211	2.0 ± 1.1 FG			
\prec Altacor 35WG ³	chlornitraniliprole	4.0 oz	5/28	376	1.7 ± 1.9 FG			
Altacor 35WG ³	chlornitraniliprole	4.0 oz	6/4	507	1.3 ± 1.4 G			
Proclaim	emamectin benzoate	4.0 oz	5/28	376	3.7 ± 2.6 EFG			
Assail 30SG ²	acetamiprid	6.4 oz	5/28	376	2.7 ± 2.8 EFG			
NAI-2302 EC ²	tolfenpyrad	14 oz	5/28	376	7.5 ± 4.5 BC			
NAI-2302 EC ²	tolfenpyrad	21 oz	5/28	376	5.2 ± 1.8 CDE			
Voliam Xpress	lamda-cyhalothrin, chlorantraniliprole	7.0 oz	5/28	376	1.5 ± 1.5 G			
Lambda-Cy_1EC ²	lamda-cyhalothrin	5.0 oz	5/28	376	4.7 ± 3.1 CDEF			
Athena EW ²	bifenthrin, abamectin	27.2 oz	5/28	376	5.3 ± 2.8 CDE			
Brigade 10 WP	bifenthrin	0.5 lb	5/28	376	1.0 ± 1.3 G			
Bifenture 10DF ²	bifenthrin, abamectin	16 oz	5/28	376	1.7 ± 1.5 FG			

ANOV statistics, F=9.027; df=21,143; P<0.0001

¹ Means followed by the same letter do not differ significantly at *P*=0.05 by Student's t-test.

 $^{\rm 2}$ Mixed with Dyne-Amic at 0.25% v/v

 3 Mixed with Induce at 1.0% v/v

Nontarget effects? Mean <u>+</u> SD *G. occidentalis* mortality and fecundity following residue and contact exposure.

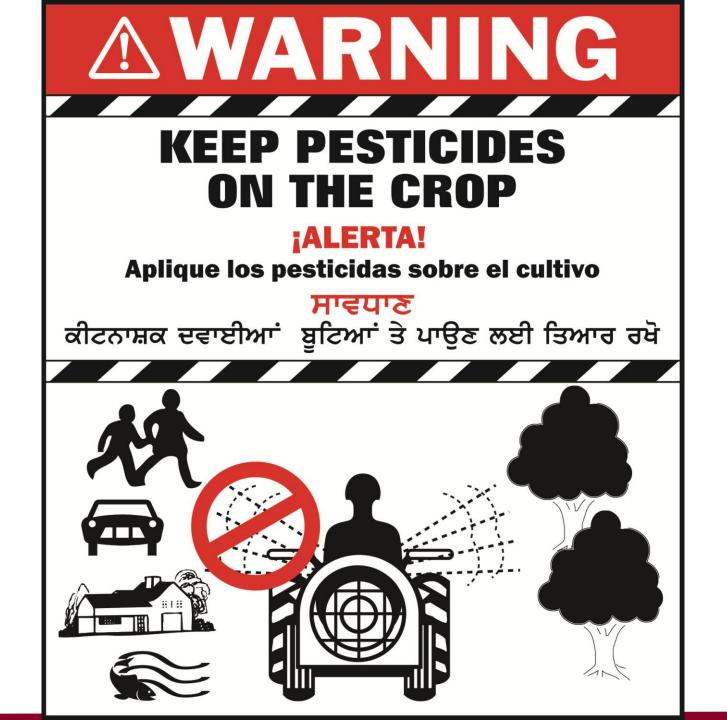
		Survival			Fecundity				
Treatment	Exposure	Adj.	m	ean	p^1	Adj.	me	ean	p^1
Control	Contact	0.86	±	0.08	-	1.81	±	0.5	-
Control	Residue	0.75	±	0.08	-	3.04	±	0.8	-
Brigade	Contact	0.57	±	0.12	0.25	0.76	±	0.3	0.46
Digaue	Residue	-	±	-	- ★	-	±	-	- ★
Altacor	Contact	0.67	±	0.12	0.54	0.69	±	0.4	0.44
Allacol	Residue	0.67	±	-	0.97	3.83	±	0.6	0.17
Dimilin	Contact	0.38	±	0.12	0.04	1.30	±	0.5	0.98
	Residue	0.76	±	0.05	1.00	4.67	±	0.7	0.64
Avaunt	Contact	0.62	±	0.11	0.37	0.33	±	0.2	0.18
	Residue	0.10	±	0.08	0.00	3.00	±	1.0	0.28
Intrepid	Contact	0.38	±	0.12	0.04	0.20	±	0.2	0.22
	Residue	0.38	±	0.08	0.04	3.50	±	0.7	0.14
Delegate	Contact	0.48	±	0.12	0.10	1.83	±	0.6	1.00
Delegate	Residue	0.14	±	0.08	0.00	1.00	±	0.5	0.81

¹ Comparisons between treatment groups and control were made using Dunn ett's method following adjustments for over-dispersion.

Arthropod IPM Opportunities

- Use cultural controls for NOW
- Target 'key' pests with less disruptive products that have lower environmental concerns
- New products can be used with NOW mating disruption to further reduce damage
- Consider applying 'May' sprays with less disruptive products as a replacement for dormant sprays for PTB
- Pyrethroids are 'cheap', but consider the additional costs of miticides and environmental mitigation

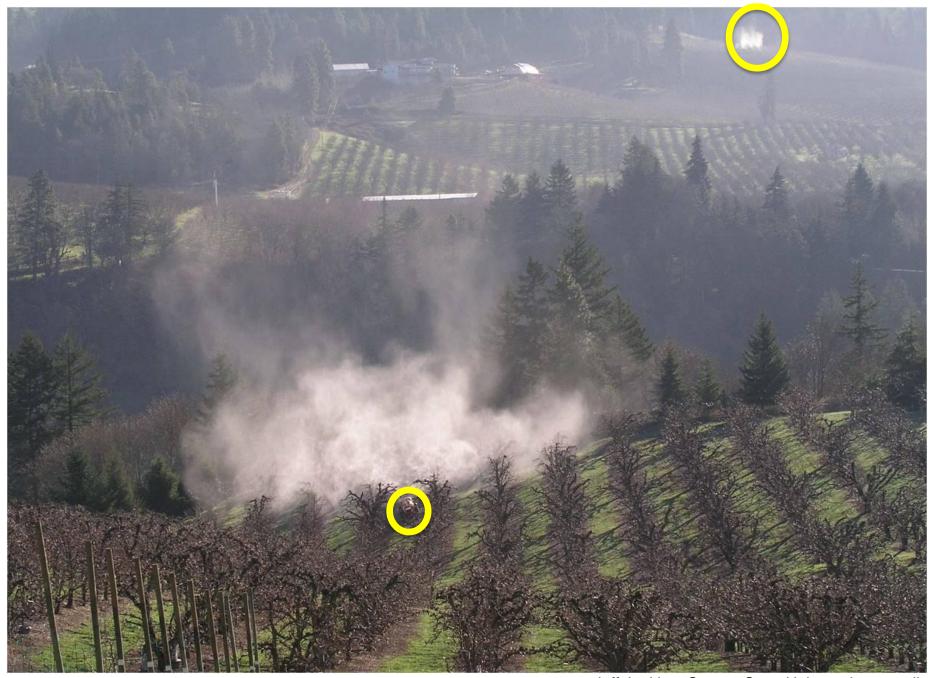
Thank You



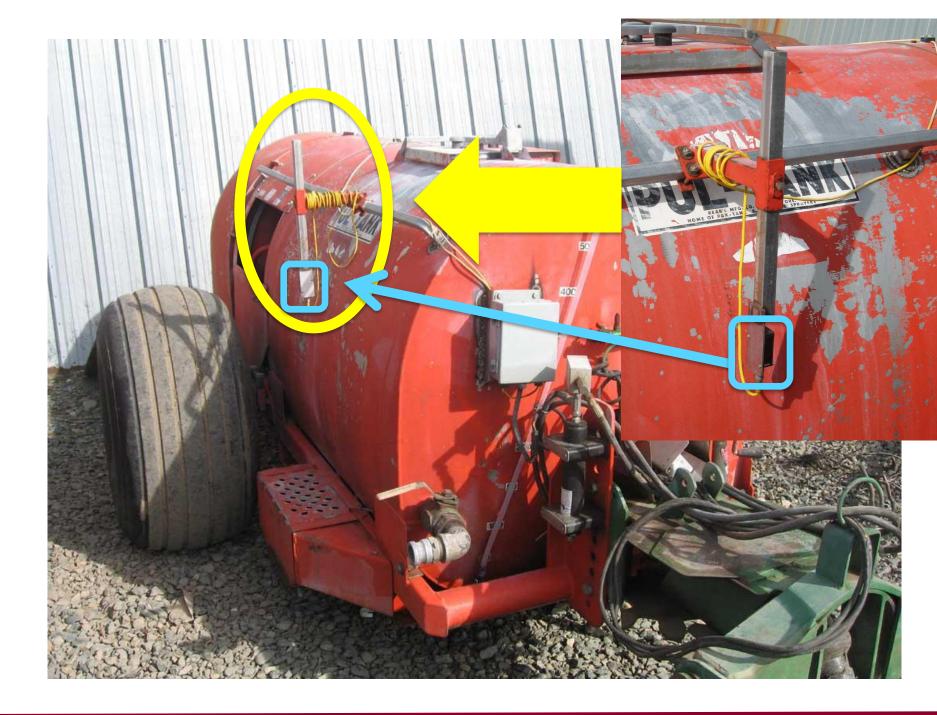
Smart Spraying Makes Sense

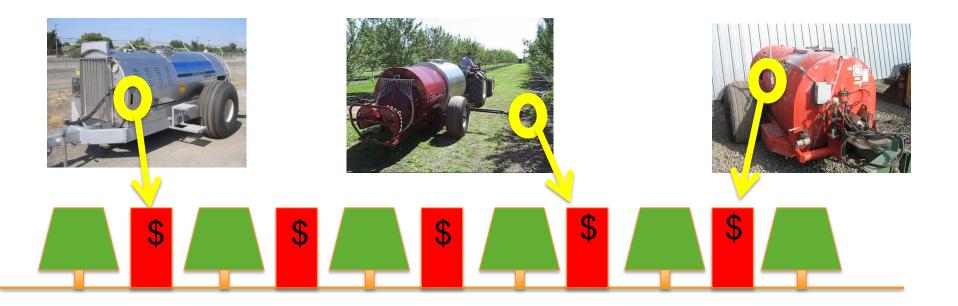
Franz Niederholzer, UC Farm Advisor, Sutter/Yuba Counties

LARGE


MEDIUM


http://www.nysaes.cornell.edu/ent/faculty/landers/pestapp




Smart sprayers use ultrasonic or laser sensors to "see" and target the tree.



In mature almonds (no skips), costs reduced 7-26%.

Sensor systems require more maintenance – that will cost \$.

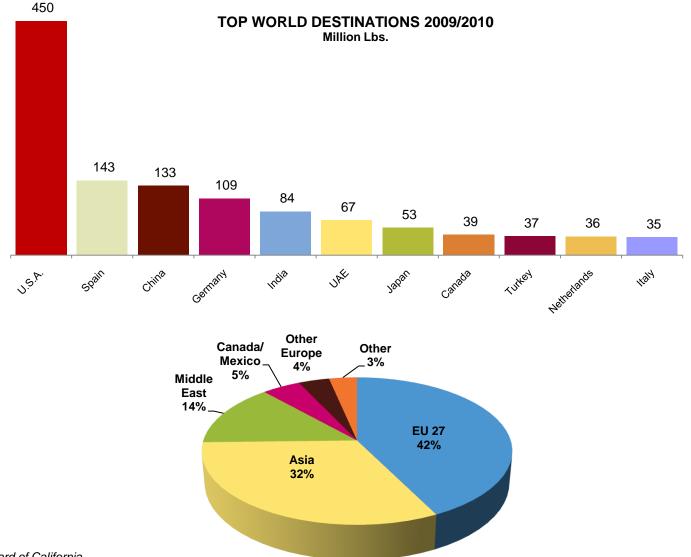
Jeff Jenkins, Oregon State Univ. -- photo credit

Thank you

International Considerations Gabriele Ludwig, Almond Board of California

International Considerations

Meeting International Food Standards


- Aflatoxins
- Maximum Pesticide Residue Levels

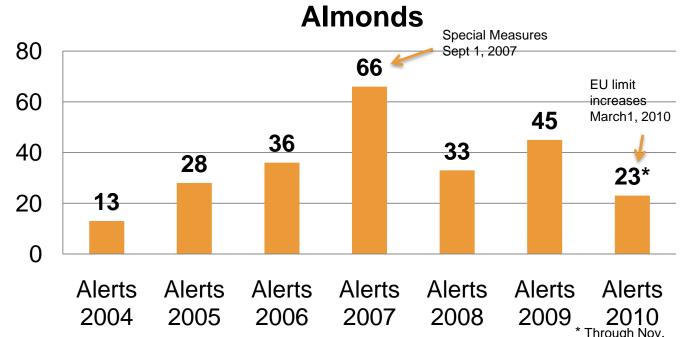
Almonds top US specialty crop for export value

- 60-70% of California almonds leave the US
- Exported to over 90 different countries.
- →Growers choices in pest management can affect market place

Direction of Almond Exports 2009-2010

Source: Almond Board of California

Example Aflatoxin Standards

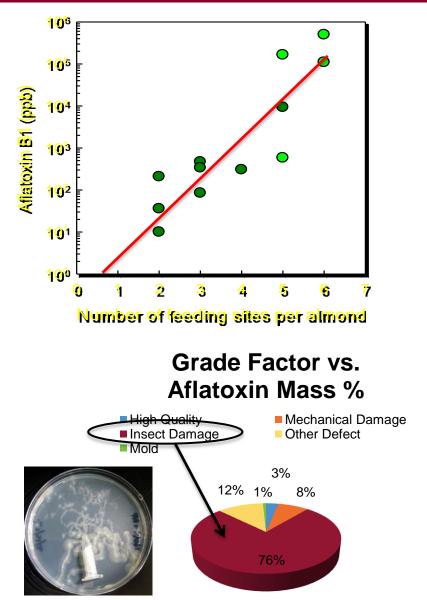

	<u>pp</u>
United States:	20
Canada:	15
EU:	10
Switzerland:	4 t
China:	20
Hong Kong:	15
India:	30
Japan:	10
United Arab Emirates:	10

b total/8 B1 total/ 2 B1 **B1** total

EU Rapid Alerts: Aflatoxins in CA Almonds

The increase in EU rapid alerts detecting aflatoxin exceedances triggered the EU to place CA almonds on "special measures" in 2007 – the first US crop ever to come under special measures

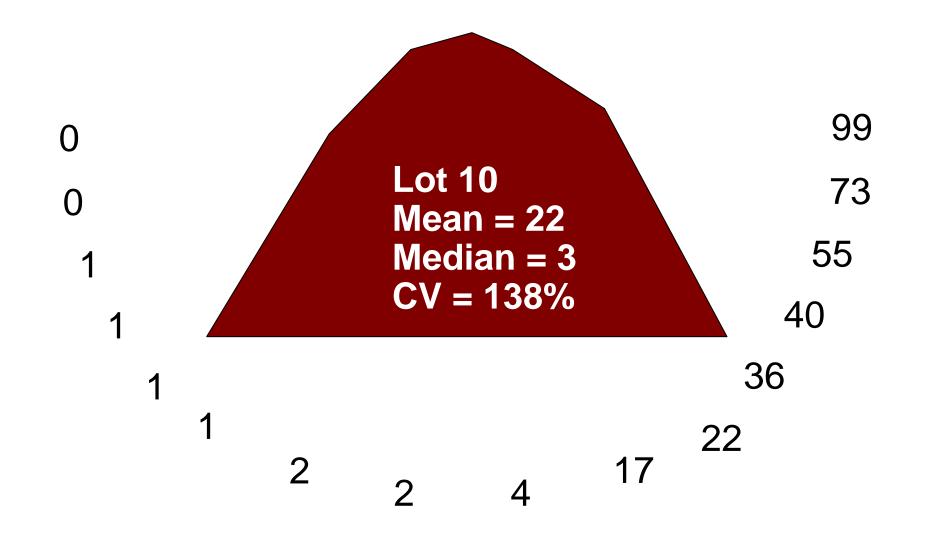
Industry response to Special Measures


- Stringent sorting to remove damage followed by testing and certification (VASP)
- Additional research field, processing, detection
- Increased disposition of reject nuts into non-food / non-feed outlets

EU increased maximum limits from 2/4 to 8/10 ppb, March 1, 2010

Understanding the Navel Orange Worm (NOW)-Aflatoxin Link

- Over 30 years of ABC–funded research demonstrates a strong link between NOW damage and aflatoxin
- Aflatoxin most associated with rejected insect-damaged nuts
- NOW larvae and adults vector *Aspergillus* spores and increase the incidence of aflatoxin


 Incidence of aflatoxin
 Incidence of aflatoxin
 Incidence of aflatoxin
- NOW larvae can survive aflatoxin concentrations 100x higher
- than other insects an important
- survival advantage in nature

GLOWING (

Pulling 16x10 kg Samples from a Single Lot

Trends in % Inedibles

Trends in % Inedibles 3.5 3.0 2.5 2.0 1.5 ►% inedibles 1.0 0.5 0.0 2009.70 199^{2,953} 1993.94 2004.05

Using inedibles as surrogate for insect damage (ABC data)

→Grower pest management efforts are paying off Generally less than 2% inedibles

In the Orchard: The Bar Has Been Raised

Anyone with more than 2% NOW damage should take a hard look at their control program

- Utilize winter sanitation and early harvest
- Monitor frequently, understand treatment/action thresholds
- When sprays are needed
 - Understand correct timing
 - Be familiar with modes of action
 - Use good application techniques (drive speed, water volume, etc.)

Additional Information at:

- Hard copy "Seasonal Guide to Environmentally Responsible Pest Management Practices in Almonds" – at ABC Booth in tent
- Electronic "Year Round IPM Program for Almonds" at UC IPM: <u>www.ipm.ucdavis.edu</u>.

MRLs = Maximum Residue Limits (aka: tolerance)

- US now registering new pest control tools faster than other countries.
- More testing being done globally
 - China has changed the odds
- Analytical methods detect ever lower levels
- Private Standards

MRLs and Residues Detected for some Almond Insecticides

		PDP 07-08		ABC 09-10		MRL (ppm)				
Compound		# of samples		# of samples	# of detects	US	Canada	Codex	EU	Japan
Bifenthrin	Brigade	547	0	242	0	0.05	def 0.1		0.05	0.05
Chlorantraniliprole	Altacor		no data		no data	0.04	def 0.1		0.05	def 0.01
Chlorpyrifos	Lorsban	547	232	242	6	0.2	def 0.1	0.05	0.05	0.2
Cyfluthrin	Baythroid	547	0	242	0	0.01	def 0.1		0.02	0.02
Diflubenzuron	Dimilin	547	0	242	0	0.06	def 0.1		0.1	0.06
Esfenvalerate	Asana	547	2	242	0	0.2	def 0.1	0.2	0.02	0.2
Flubendiamide	Belt		no data		no data	0.06	def 0.1		0.01	def 0.01
Methoxyfenozide	Intrepid	547	34	242	26	0.1	def 0.1	0.1	0.02	0.1
Permethrin	Ambush, Pounce	547	0	242	0	0.05	def 0.1	0.1	0.05	0.1
Phosmet	Imidan	547	27	242	1	0.1	def 0.1	0.2	2	0.2
Spinetoram	Delegate		no data	50	0	0.1	def 0.1	0.01	0.05	def 0.01
Spinosad	Success		no data	242	0	0.02	def 0.1	0.01	1	0.02
Spirotetramat	Movento		no data		no data	0.25	0.25	0.5	0.1	0.5
Zeta-Cypermethrin	Mustang (field)/ Demon (structural)	547	2	242	0	0.05	def 0.1		0.05	0.03

PDP = USDA-AMS Pesticide Data Program.www.ams.usda.gov.2007 and 2008 reports based on almond retail samples taken July 1, 2007- March 31, 2008

def = Default MRL, used if no MRL is established

MRLs and Residues Detected for some Almond Insecticides

		PDP 07-08		ABC 09-10		MRL (ppm)				
Compound	Brandname	# of samples	# of detects	# of samples	# of detects	US	Canada	Codex	EU	Japan
Azoxystrobin	Abound	547	0	242	2	0.02	0.02	0.01	0.1	0.02
Boscalid	Pristine	547	72	242	9	0.7	0.7	0.05	1	0.7
Iprodione	Rovral	547	4	242	24	0.3	def 0.1	0.2	0.02	1
Oryzalin	Surflan		no data	242	1	0.05	def 0.1		0.01	0.08
Glyphosate	RoundUp		no data	50	9	1	def 0.1		0.1	1
2,4-D	Orchardmaster		no data	50	9	0.2	def 0.1	0.2	0.05	0.2
Paraquat	Cyclone, Herbiquat		no data	50	1	0.05	def 0.1	0.05	0.02	0.05
Endosulfan/ metabolites	Thiodan	547	2	242	0	0.3	def 0.1		0.1	0.5
Pyriproxifen	Esteem	547	1	242	0	0.02	def 0.1		0.05	0.02

PDP = USDA-AMS Pesticide Data Program. <u>www.ams.usda.gov</u>. 2007 and 2008 reports based on almond retail samples taken July 1, 2007- March 31, 2008

Def = Default MRL, used if no MRL is established

Why Are MRLs So Different?

MRLs are not harmonized

- Different use patterns
- Different risk assessments
- Different ability to process applications
- Different residue definitions
- Information on current MRLs

www.mrldatabase.com

What Can You Do?

- 1) Contact your handler to better understand where your almonds might go
- 2) Review the status of international MRLs by using <u>www.mrldatabase.com</u>
 - Need to know product's chemical name
- 3) Assess the chances of residues being present
 - Look at USDA PDP data public (note not all compounds were tested for, especially not newer compounds)
 - Materials used close to harvest
 - Materials that remain in soils

What We Don't Want in the Newspapers!

Verbraucher

"Öko-Test" warnt vor Supermarkt-Mandarinen

Wer Mandarinen bei den großen Supermarktketten kauft, bekommt häufig Pestizide und Schalenbehandlungsmittel gratis dazu. Doch wo kann man bedenkenlos Südfrüchte erwerben?

Die Verbraucherzeitschrift "Öko-Test" ha Verbraucher davor gewarnt. ihre

▲Oeko-Test warns against consumption of Supermarket mandarins (*Berlin Newspaper, 11/25/2007*)

- Due to widespread pesticide residues

"Pistachios: Healthy or cancer-causing ► (website, 2009 based on 1999 Oeko-Test and more recent testing)

Pistazien: Gesund oder krebserregend?

Pistazien: Leider nicht immer gesund ...

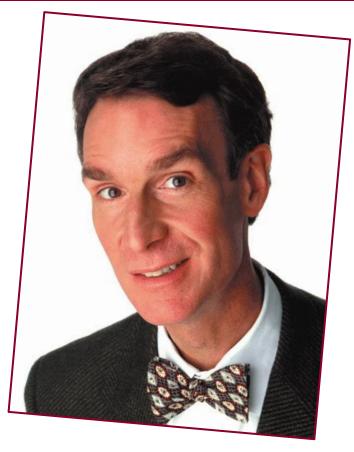
Wohl kaum eine Nuss steht so oft im Kreuzfeuer der öffentlichen Berichterstattung wie d Pistazie. Dabei sind die Dinger doch so unheimlich lecker und durch die noch vorhandene Schale auch haptisch äusserst stilvoll. Die Gefahr droht aber von einem unsichtbaren Feir

Die Krebsgefahr

Eigentlich sind die kleine Nüsse sogar ziemlich gesund: Hochwertige Fette, Vitamine und

Thank You

Wrap-Up, Discussion and Q&A


Gala Dinner Speaker

Bill Nye The Science Guy

Wednesday at 7:00 pm

Please check with the registration desk for ticket availability.

GETS EVERYTHING SORTED

Reception Sponsor

Thank you Metal Sponsors

