Managing Orchard Salinity During and After Drought

December 9, 2015

Bob Curtis, Almond Board (Moderator)

David Doll, UCCE – Merced County

David Doll, UCCE – Merced County

Understanding and Managing Salinity for Almonds

David Doll, UCCE Merced

Understanding Salinity within Almond Orchards

Salinity Tolerance of Almond

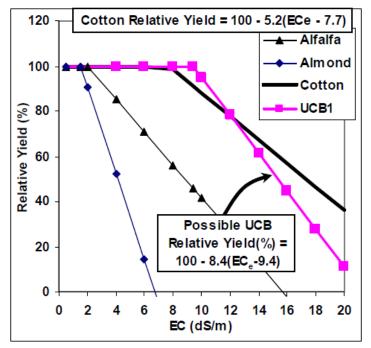


Fig. 2. Relative yield (RY) of various crops as a function of soil EC_e (Sanden, et al., 2004).

- How Tough are Almonds?
 - Sodium Sensitive
 - Every dS/m above 1.5 = 18-21 % growth rate decrease

	Degree of Growth/Yield Reduction					
	<u>Unit</u> dS/m	None Increasing	<u>Severe</u> > 4.8			
Irrigation water ¹	dS/m	< 1.1 1.1 - 3.2	> 3.2			

* Source: Adapted from E.V. Maas (1990), p. 280. Guidelines assume a 15 percent leaching fraction.

Salt Accumulation

 Why does salt accumulation occur?

Even good water can create salt issues!

Salt exclusion happens at the root.

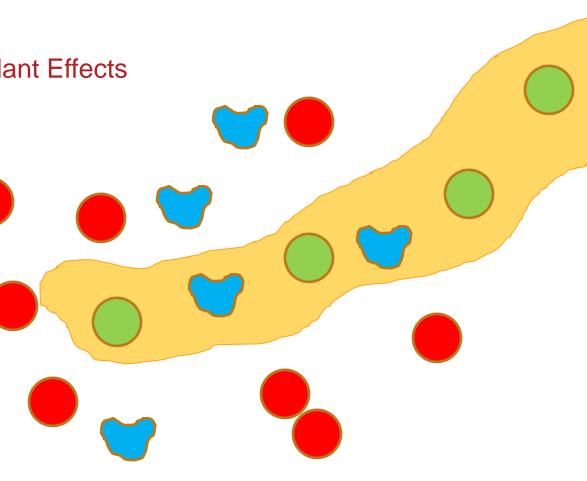
	Degree of Restriction					
	None	Increasing	Severe			
Sodium (%)	<0.25	.25-0.40	>0.40			
Chloride (%)	<3.0	3.0-0.5	>0.5			
Boron ppm	m <30 30-85 >85					

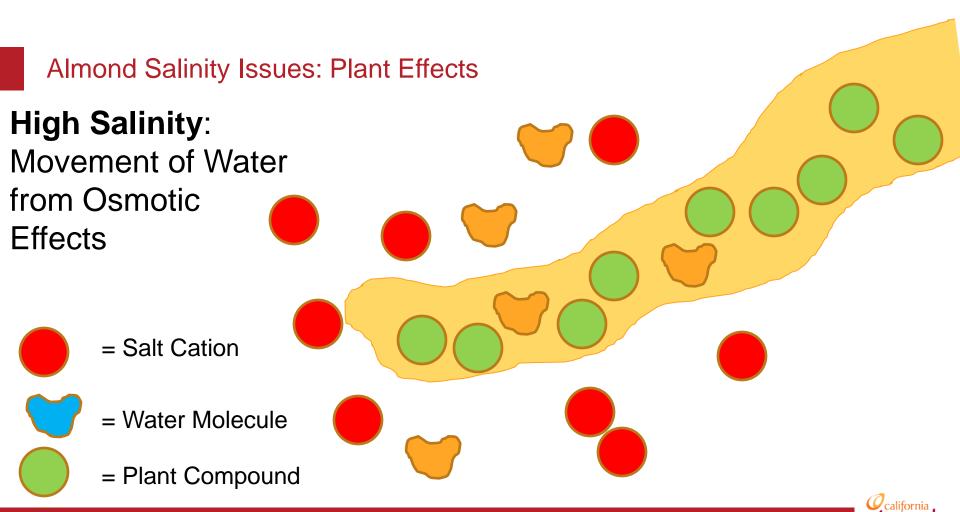
By the time you see toxicity:


- Trees are already experiencing osmotic effects prior to showing symptoms
- -Can occur rapidly (especially with chloride)
- -Takes 2-3 years of effective leaching to reduce tissue levels, regain productivity

Low Salinity:

Movement of Water from Osmotic Effects


= Plant Compound


High Salinity: Movement of Water from Osmotic Effects

- = Water Molecule
- = Plant Compound

Plant expends energy to create compounds to maintain osmotic gradient; reduces energy for crop

At some level, salt levels increase above the roots capacity to exclude-- uptake occurs

Salinity Tolerance of Almond

Sources of Salts in CA ag:

Present in soils

- Fertilizer and composts
- Irrigation water
 - Surface tends to be cleaner
 - Well variable quality

Water analysis needs to be conducted to know the quality of water!

Sample	рН	Ecw (dS/m)	Ca (meq/	L)	g Na	HCO3 (meq/L) SO4	CI	SAR	SARadj	B (ppm)
High	7.79	2.88	10.10	14	.4 12.0	4.71	26.8	4.55	3.43	8.13	0.77
UC	<7.0	<1.1			SAR			<4.0	<3.0		<0.5
	Wate						r is no	ot ide	eal!		
			Degre	e of Grov	wth/Yield	Reduction					
Salinity of: Avg. root zone ¹ Irrigation water ¹		<u>Unit</u> dS/m dS/m	<u>None</u> <u>Ir</u> < 1.5 < 1.1	ncreasing 1.5 – 4.8 1.1 – 3.2	<u>Severe</u> > 4.8 > 3.2						

* Source: Adapted from E.V. Maas (1990), p. 280. Guidelines assume a 15 percent leaching fraction.

Sample	рН	Ecw (dS/m)	Ca (meq/L)	Mg	Na	HCO3 (meq/L)	SO4	CI	SAR	SARadj	B (ppm)
High	7.79	2.88	10.10	14.4	12.0	4.71	26.8		3.43		0.77
								l		J	
UC	<7.0	<1.1			SAR			<4.0	<;)		<0.5

	Degree o	f Restriction		Water is not	ideal!
	None	Increasing	Severe	SAR	Na ⁺
SAR	<3.0	3-9	>9.0		Catt 1 Matt
Chloride (meq/l)	<5	5-15	>15	1	$\sqrt{\frac{\mathrm{Ca}^{++} + \mathrm{Mg}^{++}}{2}}$
16					almond

Almond Board of California

Sample	рН	Ecw (dS/m)	Ca (meq/L)	Mg	Na	HCO3 (meq/L)	SO4	CI	SAR	SARadj	B (ppm)
High	7.79	2.88	10.10	14.4	12.0	4.71	26.8	4.55	3.43	8.13	0.77
l		J						L			J
UC	<7.0	<1.1			SAR			<4.0	<3.0		<0.5

Acidifying water will drop adjusted SAR closer to reported SAR Water is too hot!

pH dependent: Indicates that Ca2+ or Mg2+ will not remain free in soil solution

Sample	рН	Ecw (dS/m)	Ca (meq/L)	Mg	Na	HCO3 (meq/L)	SO4	CI	SAR	SARadj	B (ppm)
High	7.79	2.88	10.10	14.4	12.0	4.71	26.8	4.55	3.43	8.13	0.77
ОК	7.89	1.20	4.33	3.5	6.42	1.77	10.1	0.99	3.25	5.44	0.46
L											
UC	<7.0	<1.1			SAR			<4.0	<3.0		<0.5

Not the best water, but workable: Adjust pH to free up calcium Additional gypsum (500 lbs/acre foot = 2 meq Ca increase)

Sample	рН	Ecw (dS/m)	Ca (meq/L)	Mg	Na	HCO3 (meq/L)	SO4	CI	SAR	SARadj	B (ppm)
High	7.79	2.88	10.10	14. 4	12.0	4.71	26.8 0	4.55	3.43	8.13	0.77
ОК	7.89	1.20	4.33	3.5	6.42	1.77	10.1	0.99	3.25	5.44	0.46
???	7.66	0.86	1.91	2.9	4.48	6.3	0.36	1.69	2.91	6.74	2.6
L											
UC	<7.0	<1.1			SAR			<4.0	<3.0		0.5
			D	egree	of Re	striction					
		None Increasing Severe									
		Boron	(mg/L) <().5	0	.5-3.0	>3.0			0	california

Almond Board of California

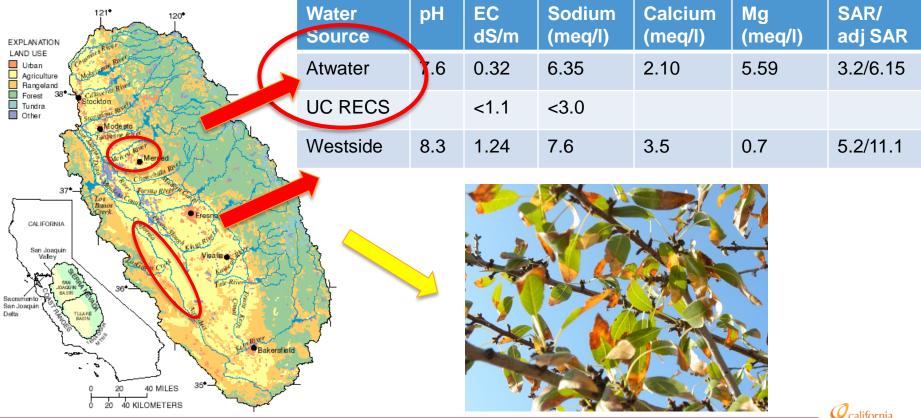
Water Modification

- Lowering pH of Irrigation Water:
 - Titration for water must be performed to determine amounts needed.
 - Send water plus acid of choice to a local lab.
- Calcium Amendments
 - Vary;
 - Can be applied or injected

Water Modification

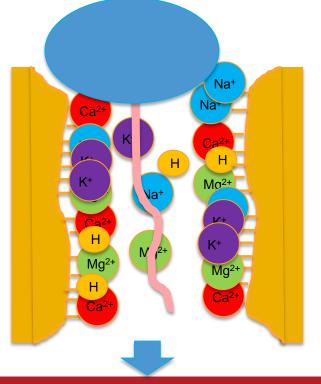
Salt	Formulation	Solubility (distil at p	Soil Rxn and effect on pH	
		(g/100 mls)	General rating	
Calcium nitrate	Ca(NO3)2	121	Highly soluble	Gradual, Neutral
Calcium chloride dihydrate	$CaCl_2 \cdot 2H_2O$	98	Highly soluble	Gradual, Neutral
Calcium chloride	CaCl2	74	Highly soluble	Gradual, Neutral
Calcium acetate	$\rm C_4H_6CaO_4$	34.7	Highly soluble	Increase pH of acid soils
Gypsum	$CaSO_4 \cdot 2H_2O$	0.26	Moderately soluble	Gradual, Neutral
Dolomite	CaMg(CO ₃) ₂	0.03 (depends on soil ph)	Low solubility	Increase pH of acid soils
Lime	CaCO3	0.005 (depends on soil ph)	Very low solubility	Increase pH of acid soils
By-product ash	CaO or Ca(OH) ₂	Variable (depends on soil pH)	Very low solubility	Increase pH of acid soils

Source: CRC Handbook of Chemistry and Physics, 56th Edition

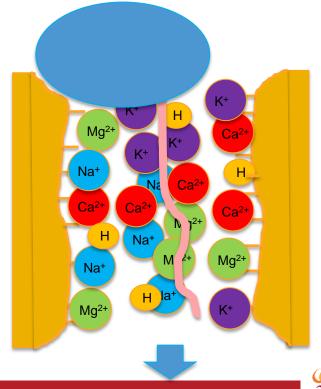

Water Modification

Adding Calcium to Water

- In solution: ~ 250 lbs of gypsum/acre ft to increase one meq/l of calcium
- Land grade applications made monthly but need 6x more to get the same effect

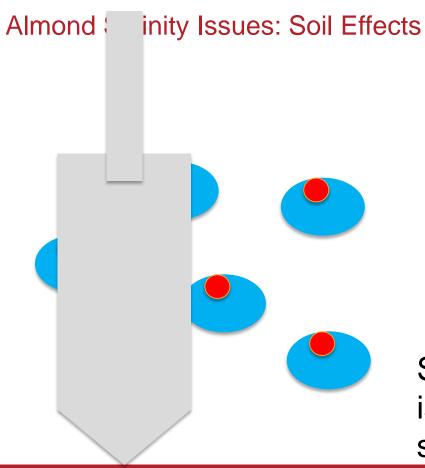


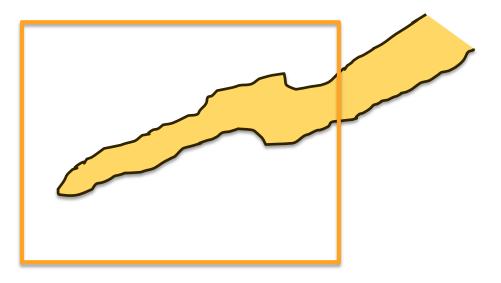
Low Exchange Capacity Soils will show sodium toxicity before high exchange capacity soils.


WHY?

Almond Salinity Issues: Soil Effects Soil with high CEC

Soil with low CEC




califorr

Soil Sampling may not provide answer in low CEC soils:

	E.C. (dS/m)	Sodium (meq/L)	Chloride (meq/L)
1'	0.19	0.55	0.31
2'	0.19	0.82	0.30
3'	0.81	3.12	0.94
4'	1.25	5.05	1.24
5'	0.93	3.96	0.93
UC Value	<1.5	<5.0	<5.0

Salinity that root is exposed to is not the same as volume sampled for LOW CEC SOILS

Managing Salinity within Almond Orchards

Almond Salinity Issues: Soil Sampling

Soil Sampling should occur in the fall after the completion of the irrigation season

- Samples should be taken within the wetting profile;
- A complete soil profile should be pulled at even increments down to a minimum depth of five feet (e.g. 0"-12", 13"-24", 25"-36", 37"-48", and 49"-60";
- Multiple locations can be pooled within a block, but each block/irrigation set should have an analysis;
- If struggling with infiltration, consider pulling a 0-6" sample to look for chemical imbalances;
- If average root system salinity is over 1.5 dS/m, than a leaching program should be considered;
- Follow up the leaching program with another round of sampling to determine the effectiveness of the program.

Almond Salinity Issues: Management

4 Utilized Principles:

- Managing Salt Build-up
- Displacement of Salts
- Leaching of Salts
- Rootstock Resistance

In-Season Leaching Fractions

Water Amendments

Dormant Leaching

Pre-plant decision

- Dependent upon the salinity of the soil and water applied.
- Requires salinity analysis of soil and water

ECe = Salinity of the Soil (dS/m)

ECiw = Salinity of Irrigation Water (dS/m)

Ea = irrigation system application efficiency

ECiw Leaching Requirement (LR) = ------(5 x ECe) - ECiw

Net Inches Required Gross Inches = -----(1 – LR) (Ea)

• Example: 2.33 net inches of water needed. Ea=80%

ECe = Salinity of the Soil (dS/m) = 4.0

ECiw = Salinity of Irrigation Water (dS/m) = 2

ECiw 2Leaching Requirement (LR) = ------ = ----- = 0.11 (5 x ECe) - ECiw (5 x 4.0) - 2 Net Inches Required 2.33 Gross Inches = ------ = ----- = 3.69 (1 - LR) (Ea) (1 - 0.11)(0.8)

Generalized LC:

- If want soil EC (ECe) = water EC (ECw)= 33%
- ECe = 2X ECw, LF = 10%
- ECe = 3X ECw, LF = 5%

Risks of in-season leaching programs:

- Too wet of soils for proper root development
 - Encourages root disease
- May encourage vigor, increased timing of fruit development, risk of hull-rot;
- May leach nitrate;
- Dry down will pull salts back into the rootzone (e.g. hull-split RDI or harvest).

Is this the best strategy?

Almond Salinity Management: Dormant Leaching

Leaching is the primary step to manage salts but it is not necessary every irrigation or perhaps even every season, only when crop tolerances are approached

Leaching is most efficient in the winter when crops are dormant and ET is low. Timing does not coincide with critical periods of nitrogen fertilization and plant activity, reducing leaching risk and disease;

Almond Salinity Management: Dormant Leaching

- The soil water content must exceed field capacity in the root zone for leaching to occur;
- Intermittent periods of irrigation and rainfall will more efficiently leach salts and boron than continuous,
- During rain events, drip systems, or limited pattern microsprinklers should be ran to help keep salts out of rootzone
- Low CEC soils (sands, loamy sands) will require less water than higher CEC soils due to reduced salt concentration/cation "tie up"

Almond Salinity Management: Dormant Leaching

	Proportion that rootzone salinity exceeds threshold					
	1.0X	1.3X	2X	2.6X	3.3X	4X
Peach						
(dS/m)	1.5	1.95	3	3.9	4.95	6
PxA Hybrid						
(dS/m)	2	2.6	4	5.2	6.6	8
Inches of						
water/Foot	0	0.6	1.8	3	4.2	5.4

Assumes that rootzone is at field capacity

Almond Salinity Management: Dormant Leaching

Dormant leaching programs for sodium will most likely reduce chloride and boron

- Managing chloride is easier due to being an anion, and less water will be needed;
- If managing boron (weak anion/neutral), more water will be needed than chloride (about twice the amount);
- Amounts will vary based on soil and chloride load, but would start with about ¹/₂ the amount required for sodium

Almond Salinity Management: Displacement

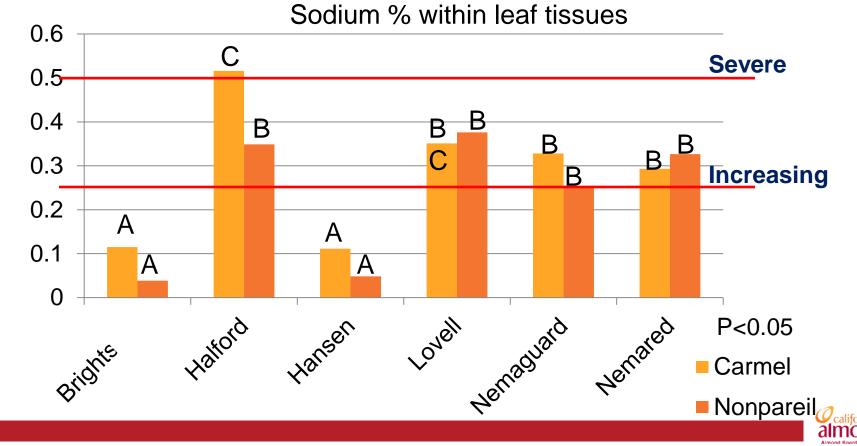
Increasing cation concentrations can help to displace sodium;

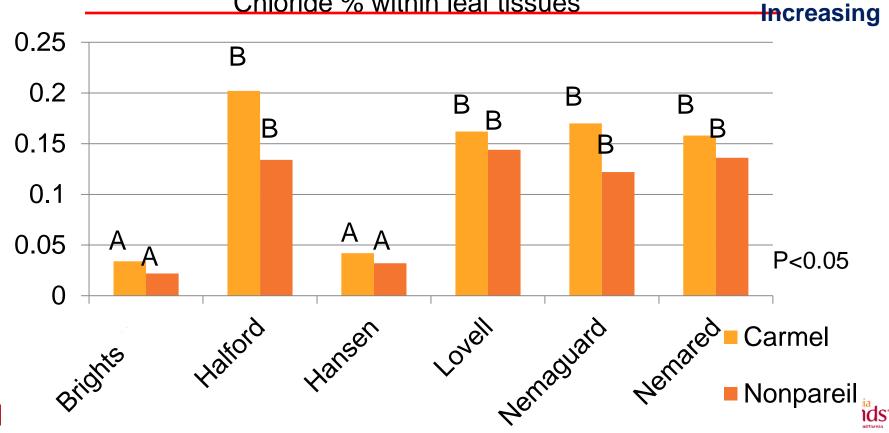
- Use of calcium or magnesium containing amendments;
 - -Generally rely on calcium as it has other plant benefits;
 - Some sources may precipitate with water source.
- Acidifying the soil to decrease soil pH, increasing hydrogen ions;
- Not needed for chloride;
- May not be as useful for low CEC soils.

Almond Salinity Management: Overview

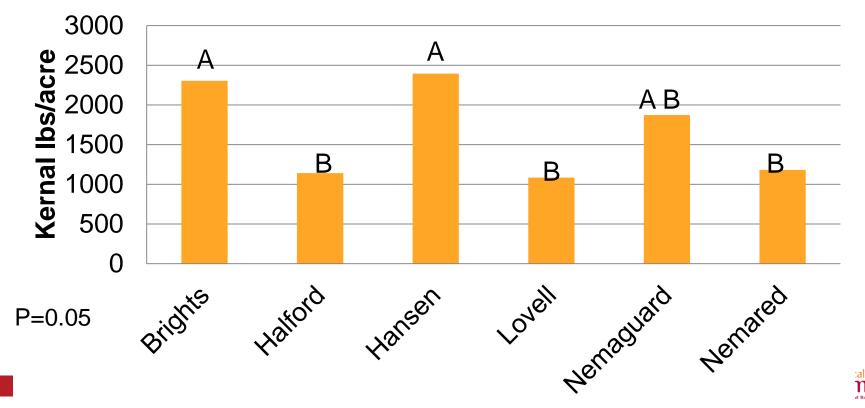
Low CEC Soils (< 12 meq/100 g)		Higher CEC Soils (> 12 meq/100 g)
Sand, Loamy sands	Texture	Sandy loams, loams, silts, and clays
0.4"-1.5" per foot	Water Holding Capacity	>1.5" per foot
High	Severity of Uptake Burn	Increases with salinity
Low	Difficulty to Leach	High due to WHC, CEC
2-4 times the WHC, (8"- 15")	Leaching Amounts	3"-15" plus profile fill (~10-22")
Low rates	Amendments	High Rates (CEC)

Trial was established in 1989 on a sandy soil with low exchange capacity (3.1 meq/100g of soil)


- -Irrigated with solid set sprinklers with low quality groundwater
 - moderately high sodium, 6.35 meq/L (SAR= 3.06)
 - low chloride 0.75 meq/
- -6 Rootstocks: Brights Hybrid, Halford, Hansen, Lovell, Nemaguard, Nemared,
- -5 blocks of 5 trees established in RCBD planted 24'x24'


Around the orchards 10th year, marginal leaf scorching started to appear on peach rootstocks

Possible differences in salt tolerance?



Chloride % within leaf tissues

Almond Salinity Management: Rootstock Selection 20th Leaf Yields, Nonpareil

Lovell Rootstock Nonpareil Carmel

P/A Hybrid Rootstock Carmel Nonpareil

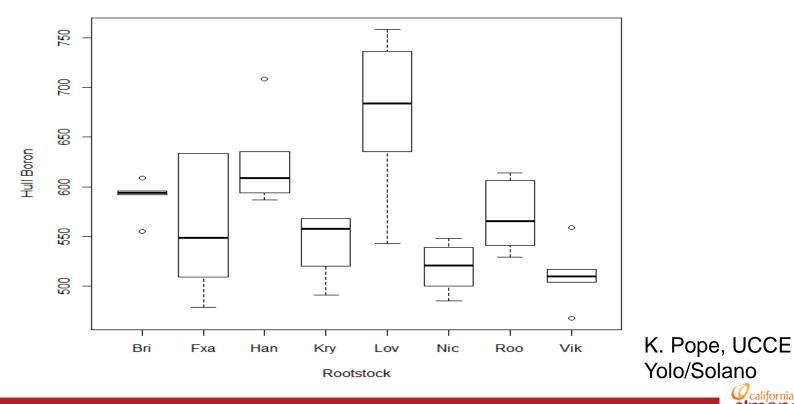
Roger Duncan, UCCE

Stanislaus

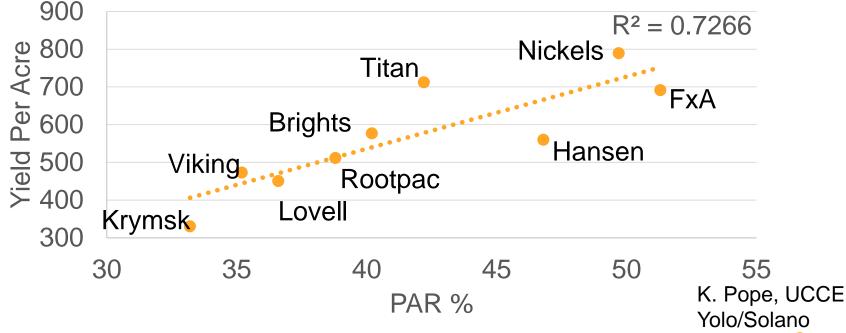
Rootstock selection does impact salinity tolerance with P/A hybrids appearing more tolerant to SODIUM/CHLORIDE than peach rootstocks.

Relative Salt Tolerance of 15					
Almond Rootstocks					

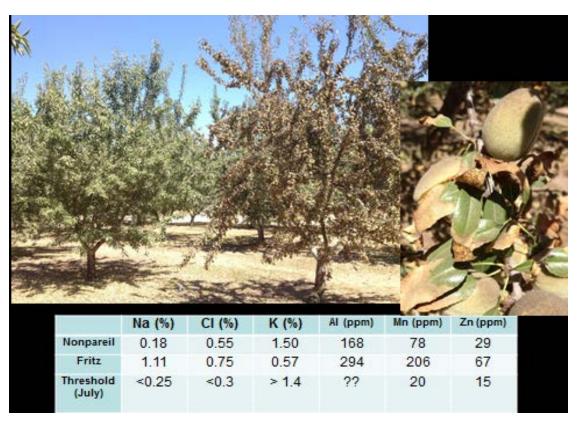
	% Sodium	% Chloride	
Nemaguard	0.99	0.51	
Lovell	0.70	0.50	
Guardian	0.76	0.41	
Cadaman	0.38	0.25	
Empyrean 1	0.09	0.07	
Hansen	0.09	0.07	
Nickels	0.28	0.15	
GF 677	0.04	0.05	
Cornerstone	0.04	0.05	
Viking	0.29	0.21	
Atlas	0.94	0.29	
Krymsk 86	0.60	0.32	
Penta	0.30	0.41	
Julior	0.35	0.16	
Empyrean 101	0.06	0.04	


Yolo County Rootstock Trial (Debuse, Pope)

Methods: 'Nonpareil' nursery grafted trees on eight rootstocks were planted Feb, 2011, at 22' x 18'. Twenty Titan SG1s were added April, 2011, but not in the replicated trial.


The trial is located in Yolo County north of Cache Creek. The soil is Marvin silty clay loam. Boron in the irrigation water ranges from <1mg/l to 3.1 mg/l, depending on year and month.

Hull Boron


aliforn

Yield Per Acre 2014

Almond Salinity Management: Variety Influence

Roger Duncan, UCCE Stanislaus

Almond Salinity Management

- Spend some time to improve distribution uniformity in orchard
- Be careful with too salty of water may do more harm than good!
- Know your water, soil, and utilize a leaching program
- Monitor tissue levels consistently

Quick Notes on DU Improvement

- Micro-irrigation systems decline in DU as they age (most dramatically after 5 years);
- Clean or remove hose screens, flush lines monthly, replace emitters with the same emitter;
- Use amendments that won't precipitate dependent upon water quality;
- Check pressures and flows at the emitter, risers, and pump.

These practices help reduce the impacts of salinity!

