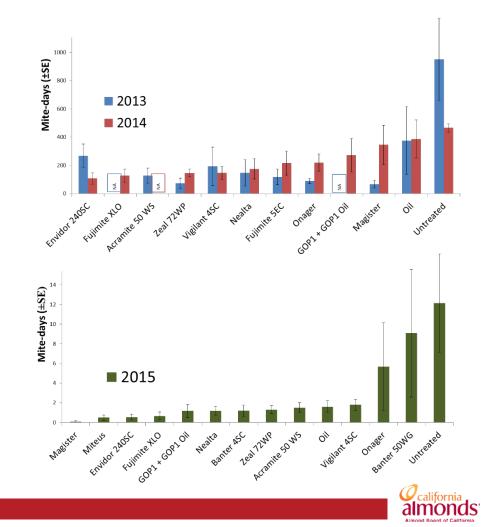
Research Update: Pest Management

December 10, 2015

Bob Curtis, Almond Board

David Haviland, UCCE Entomologist

Management of Arthropod Pests in the Lower San Joaquin Valley

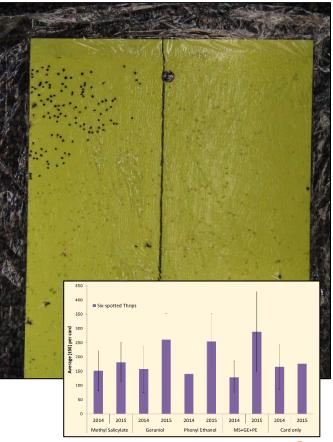

David Haviland UC Cooperative Extension, Kern Co.

Spider mites- miticides

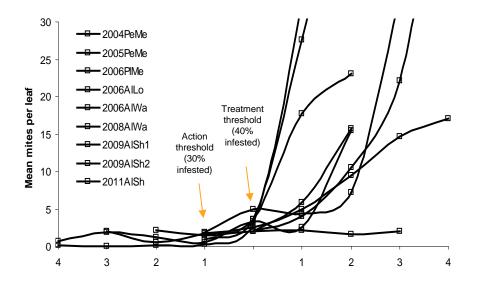
- Summer miticide trials
- Grower standards still effective
 - Acramite, Envidor, Fujimite, Onager, Vigilant, Zeal
- Fujimite formulations all effective
 - Past (5C), present (XLO), future (SC)(low odor, low VOC)
- New miticide Nealta is very effective
 - Excellent profile against beneficials
 - Similar uses/efficacy as Fujimite
 - Fast-acting contact miticide
- New products- Magister
- New formulations- bifenazate products

Spider mites- monitoring for beneficials

- Trees respond to herbivory by releasing chemicals into the air
 - Called "herbivore induced plant volatiles" (HIPVs)
 - Attractive to predatory insects
- HIPVs have been used in several studies
 - As lures for traps or general attractants
 - Studies on several predators, but not of spider mites
- Kern County study for last two years
 - Evaluate three lures by themselves and together
 - Attached to yellow sticky cards, ¼ acre plots
 - Replicated trial, 5 weeks, evaluated weekly
 - 4 key predators



Spider mites- monitoring for beneficials


- Traps collected predators
 - No significant differences among treatments
- Numbers indicate something else might be going on
 - First week- 18 thrips per card
 - Second week- 221 thrips per card
 - Week 2 to 5 average- 286 per card
 - In 4 weeks in a 7-acre orchard we captured 5,709 thrips
 - 50 per tree
- Hypothesis: HIPVs attracted beneficials to the orchard
 - Predators may not use them for close-up searching

Spider mites- thresholds

- Advocate threshold-based miticide use
 - Preventative programs inhibit establishment of biocontrol
 - The primary miticide used in preventative programs kills sixspotted thrips
- Doing multi-year analysis of threshold data
- Evaluating PUR data to look at trends

Leaffooted bug management

- One year ago-
 - WARNING: Leaffooted bug populations in the southern San Joaquin Valley are at all-time highs
 - LFB completed an extra generation this year
 - Populations are comparable or higher than fall 2005
- This spring-
 - Warnings continued, monitoring levels at their highest
 - Treatments made as needed, overall damage low
- Spring treatments should be based on monitoring
 - Lorsban- industry standard
 - Excellent on contact, residual of 1 week
 - Pyrethroids- Brigade and Warrior II
 - Excellent on contact, residual of 4+ weeks
 - Abamectin- Agri-mek and others
 - Excellent on contact, no residual activity
 - Belay, Bexar, Sivanto, Beleaf, Exirel, Sequoia
 - Some contact activity, no residual activity

Brad Hanson, UCCE Weed Specialist

Weed Management Update

Brad Hanson UC Cooperative Extension Specialist

Weed research and extension focus

- Program focus is on orchards and vineyards, but provides applied weed management and herbicide support in annual crops
 - Herbicidal weed control efficacy
 - New products, label changes, tankmix partners, statewide performance, etc
 - Herbicide-resistant weeds
 - Management
 - Physiology, genetics, and mechanisms
 - Weed biology
 - reproduction and interactions with environment or management practices
 - Herbicide crop safety issues
 - · Via foliar drift, soil uptake, other routes of exposure
 - Pesticide registration support
 - IR4 program and with crop protection industry partners

Epidemiology and control of foliar fungal and bacterial almond diseases Brown rot, Jacket rot, Shot hole, Rust, Hull rot, Alternaria leaf spot, Scab, and Bacterial spot

Dr. J. E. Adaskaveg Department of Plant Pathology and Microbiology University of California, Riverside

Foliar and fruit diseases of almond in California

Brown rot blossom blight

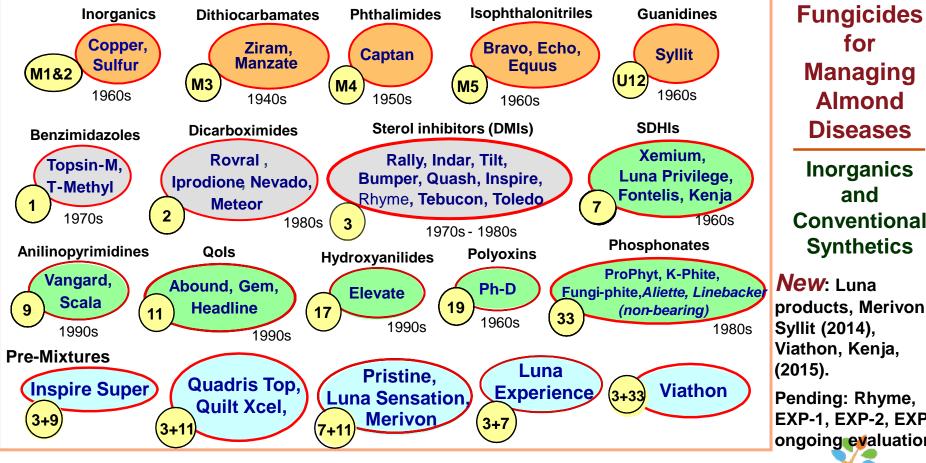
Green fruit rot/Jacket rot

Shot hole

Bacterial spot

Anthracnose

Scab



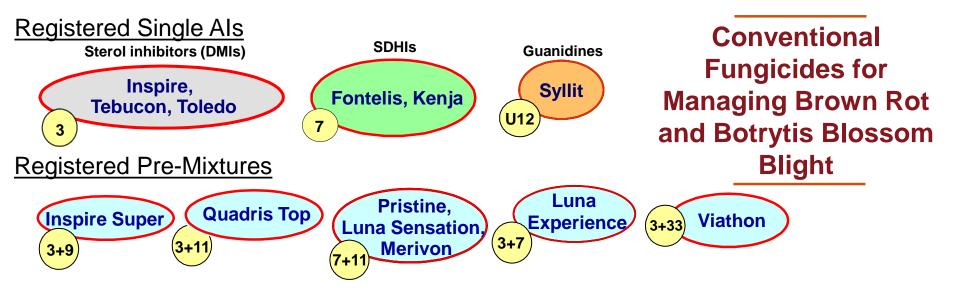
Alternaria leaf spot

Rust

for Managing Almond Diseases Inorganics and Conventional **Synthetics New:** Luna products, Merivon, Syllit (2014), Viathon, Kenja, (2015).

Pending: Rhyme, EXP-1. EXP-2. EXP-3: ongoing evaluation

Brown rot blossom blight


Rotations

	No.	Treatment	Rate/A oz/ fl oz	PB	FB	PF	PF	Brown rot	Gray mold
	1	Control						а	a
	2	EXP-1	4	@	@	@	@	bcd	cdef
	3	Fontelis	20	@	@	@	@	bc	b
	4	Kenja	13.7	@	@	@	@	b	bc
	5	Kenja + IB18220	10.3 + 6.9	@	@	@	@	e	ef
	7	Luna Experience + NIS	6	@	@	@	@	de	def
	8	Luna Sensation + NIS	5	@	@	@	@	cde	bc
	9	EXP-2	7	@	@	@	@	bcde	f
	10	EXP-3	7	@	@	@	@	bcde	cdef
	12	Merivon	5.5	@	@	@	@	bcde	cd
	13	Syllit	24		@	@	@	bcde	b
		Tebuconazole	4	@	@	@	@		
2	15	Indar 2F + surf	6 + 16	@	@			bcde	а
;		Dithane + surf	144 + 16			@	@		
5	16	Vangard	5	@				de	a
2		Quadris Top + Dyn.	14 + 16		@				
		Bravo	64			@			
		Inspire EC	7				@		
								0 30 60 90 120 15	0 0 20 40 60 80 100
								Strikes/tree	Incidence (%)

- Risk of infection is determined by environmental conditions
- Temperatures >58F
- Wetness
- Multiple highly effective fungicides are available

Almond Conference

Experimentals: Rhyme, EXP-1, EXP-2, EXP-3: ongoing evaluation

Summary - Single Als and Pre-mixtures

- Highly efficacious against brown rot blossom blight Pre-mixtures and tank mixtures

- Improved performance against Botrytis blossom blight
- Resistance management

Brown Rot - Timing of	Determining factors	Delayed bloom application (30-40% bloom)	PB (5% bloom) <u>and</u> FB (80% bloom) applications		
bloom	Environmental conditions (rain)	Less favorable	Highly favorable		
applications	Fungicide properties	Locally systemic action	With or without locally systemic action		

- Many of the newer brown rot fungicides have some locally systemic activity and subsequently pre- and some post-infection activity.
- During less favorable environments a single application at delayed bloom (20-40% bloom) is sufficient for good disease control.
- During highly favorable conditions, a 2-spray program with applications at pink bud and full bloom is recommended.

Almond Hull Rot

- Caused by Rhizopus stolonifer or by Monilinia fructicola
- Both pathogens infect fruit and cause dieback

Rhizopus stolonifer (left), *Monilinia fructicola* (right)

- For dieback of Rhizopus hull rot, fumaric acid production of the pathogen may be involved.
- The two pathogens require different management strategies

Almond Hull Rot – Alkaline treatments and fungicides

Strikes/tree

	Treatment*	Rate/A (oz / fl oz)	Hull rot
	Control		а
	Double OK 0-0-30	384/ 64*	b
	Di-potassium phosphate	32 / 48**	b
	Inspire	7	b
	Quash + S-2200	3.36 + 3.36	b
	Double OK 0-0-30 + Qu Top + Dyn.	384 / 64* + 14 + 16	b
	Di-K phosphate + Qu Top + Dyn.	32 / 48** + 14 + 16	b
	Quadris Top + Dyn.	14 + 16	b
	Merivon	6.5	b
	EXP-2	7	b
	EXP-3	7	b
SU	Ph-D + Quash + Nufilm P	6.2 + 3 + 8	b
tiol	Ph-D + Abound + Nufilm P	6.2 + 12 + 8	
Rotations	Luna Experience	6	b
Ř	Luna Sensation	5	
	cv. Nonpareil, applications 6	6-12 and 7-14-15	0 10 20 30 40

Alkaline treatments were evaluated to possibly neutralize fumaric acid.

- Foliar applications of alkaline fertilizers were similarly effective as some of the fungicide treatments.
- However, no additive effect with fungicides tested.

Most **fungicides** performed similarly and significantly reduced the disease as compared to the control (FG 3+7, 3+9, 7+11, 3+11, 3+19).

Almond Hull Rot - Inoculum reduction treatments

Sub-plot appl.		6/12	Control		Luna Experience		Quadris Top + Dyn		Merivon		Inspire		Main plot	
		7/14	Contr	ol	Luna Sensation		Quadris Top + Dyn		Merivon		Inspire		Treatment Avg	
	Main Plot	Appl. Date	Dis. Inc.^	LSD^^	Dis. Inc.	LSD	Dis. Inc.	LSD	Dis. Inc.	LSD	Dis. Inc.	LSD	Dis. Inc.	LSD
	Control		22.6	Аa	12.0	AB a	8.3	Ва	12.5	AB a	7.8	Ва	15.4	а
	LLS 15 gal/A	5-7/6-3	23.5	Аa	9.3	Ва	6.8	Ва	9.7	Ва	9.7	Ва	14.3	а
	Sub-plot trt avg		23.1	Α	10.4	В	7.4	В	10.8	В	8.9	В		

Statistical comparisons for values by column are with lower case letters, those by row are with upper case letters. Main plot treatment averages are values for treatments over all sub-plots and are statistically compared by column. Sub-plot averages are values for each of the main plots and are statistically compared within the row.

- **Soil treatments** with calcium sulfate or liquid lime sulfur to reduce soil inoculum of *R. stolonifer* were <u>not</u> effective.
- For the most effective integrated management of hull rot, fungicides should be integrated with proper water management (i.e., deficit irrigation) and restricted nitrogen fertilization.

Almond scab management

Effective management requires:

- Knowledge of the disease history of the orchard
- Dormant treatments Applications to delay and reduce twig sporulation, synchronize disease management programs
 - Chlorothalonil-oil 2EE Registration (Dec-Jan)
 - Copper oil
- Monitoring for twig sporulation in the spring
- In-season fungicide applications at the beginning of twig sporulation (2 applications timed with Alternaria treatments if a dormant application is made)

Sporulating twig lesions and scab on fruit

Fusicladium carpophilum

	Detal			
Treatment*	Rate/A oz/fl oz	4/21	5/12	Incidence (%)
Control				a
Rhyme	7	@	@	de
Inspire	7	@	@	e
Quash	3.36	@	@	e
EXP-1	5.14	@	@	e
Kenja + IB18121	8.6 + 12.9	@	@	bc
Ph-D + Tebucon 45 + NF-P	6.2 + 8 + 8	@	@	e
Quash + S2200	3.36 + 3.36	@	@	de
Fontelis + Tebucon 45	20 + 8	@	@	e
Luna Experience	6	@	@	bcd
Luna Sensation	5	@	@	cde
EXP-2	7	@	@	e
EXP-3	7	@	@	e
Merivon	6.5	@	@	e
Ph-D + Quash + NF-P	6.2 + 3 + 8	@	I	e
Fontelis + Tebucon 45 + NF-P	20 + 8 + 8		@	
Bravo WeatherStik	64	@		de
Quadris Top + DyneAmic	14 + 16		@	
				0 20 40 60 80 1

cv. Monterey, Colusa Co., 2015, NF-P = Nufilm-P

Rotations

In-season treatments for scab

Most effective newer fungicides:
Single: Chlorothalonil (high rates and extended PHI proposed), Quash, Inspire, EXP-1, Ph-D, Syllit,
Pre-mixtures: Quadris Top, Inspire Super, Luna Sensation, Merivon, EXP-2, EXP-3
Rotations: including Ph-D, Quash, Fontelis, Tebucon in tank mixtures

Multi-site fungicides with low resistance potential (chlorothalonil, mancozeb, captan, ziram) should be in rotations with the newer single-site and pre-mix fungicides.

Alternaria leaf spot

Alternaria alternata, A. arborescens, A. tenuissima

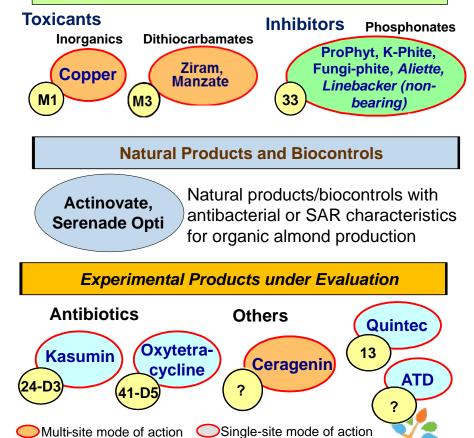
- Inoculum is omnipresent in orchards.
- The disease is greatly influenced by microclimatic conditions.
- The DSV Model can be used to time applications based on infection periods in late spring/early summer.

Efficacy of Alternaria leaf spot treatments - 2015

	Treatment*	Rate (/A)	4/29	5/20	7/7	
	Control					а
\checkmark	Ph-D	6.2 oz	@	@	0	efg
	Inspire + Dyn.	7 + 16 fl oz	@	@	@	bcdefg
\checkmark	Fontelis	20 fl oz	@	@	@	cdefg
\checkmark	Fontelis + Tebucon	20 + 8 fl/oz	@	@	@	defg
	Fontelis + Abound	20 + 12 fl oz	@	@	@	bc
	Kenja + IB18121	8.6 + 12.9 fl oz	@	@	@	ab
	Luna Experience	6 fl oz	@	@	@	bcdef
	Luna Sensation	5 fl oz	@	@	@	bcdefg
\checkmark	EXP-2	7 fl oz	@	@	@	g
\checkmark	EXP-3	7 fl oz	@	@	@	g
	Merivon	6.5 fl oz	@	@	@	bcde
	Fontelis	20 fl oz	@			fg
Suc	Quash	3 oz		@		
atic	Ph-D	6.2 oz			@	
Rotations	Bravo WeatherStik	64 fl oz	@			bcd
	Quadris Top + Dyn.	14 + 16 fl oz		@	@	
	cv. Carn	nel Colusa Co	•			0 20 40 60 80 100 Incidence (%)

- Two to three applications in late spring based on the DSV-model.
- Most effective in 2015: Ph-D, Fontelis, Inspire, Fontelis + Tebucon, EXP-2, EXP-3 - have to be strictly used in rotations and/or mixtures for resistance management.
- No detections of new resistance
- Other components (e.g., irrigation schedule, water penetration, planting design, etc.) of an integrated approach in disease management are highly critical.

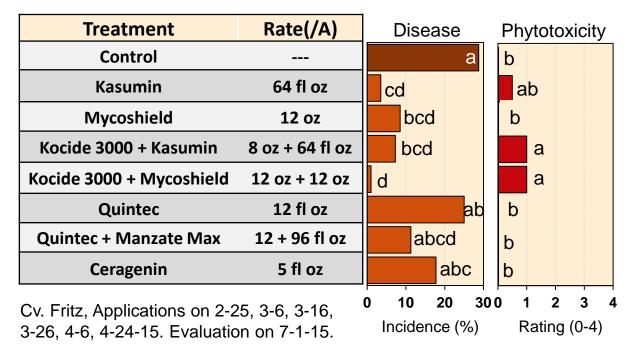
Management of Bacterial Spot



The pathogen *Xanthomonas arboricola* pv. *pruni* overwinters in fruit mummies on the tree. Isolates evaluated to date were all copper-sensitive.

High-disease years: Delayed dormant treatments with copper, copper-mancozeb, or copper-mancozeb-captan.

In-season treatments starting at full bloom/petal fall & timed around rain events and before temperatures start to rise.


Inorganics and Conventional Synthetics

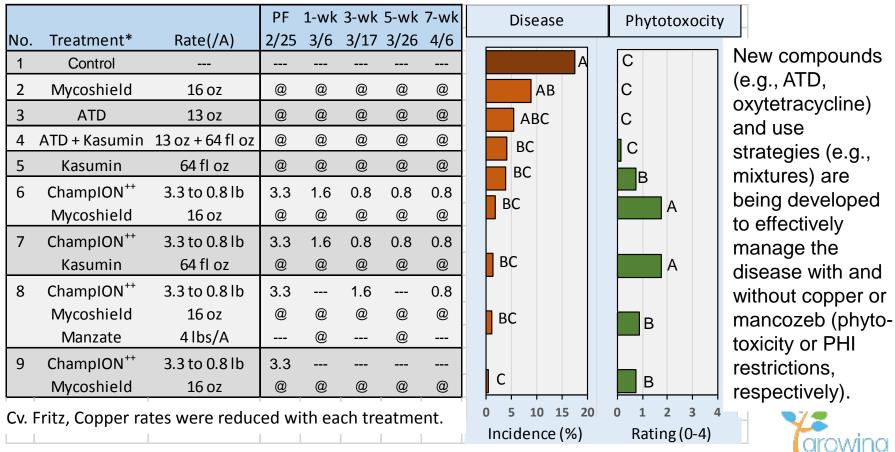
FRAC group

Reduced-risk fungicides

Management of Bacterial Spot – In-season treatments

Registration of Kasumin is on-going in IR-4 program

Most effective and


consistent: copper (Kocide 3000, Badge, ChampION++) and copper mixed with mancozeb or Kasumin.

Experimentals: Kasumin, Fireline / Mycoshield, and USF2018A also effective.

Copper phytotoxicity on leaves after 4-5 applications even when copper rates were successively reduced. Minor leaf tip necrosis after \geq 4 successive Kasumin applications.

Management of Bacterial Spot – in-season treatments

Dr. J. E. Adaskaveg

Department of Plant Pathology University of California, Riverside

Brent Holtz, UCCE – San Joaquin County

Almond Bloom Disease Control Trials

By Brent A. Holtz, Ph.D. UC Farm Advisor in San Joaquin County

• When almond trees are blooming their flowers are susceptible to a number of plant pathogenic fungi capable of causing disease.

 Fungicides are usually applied during bloom to protect blossoms from becoming infected.
 Fungicides should be selected carefully to avoid resistance and to control the pathogens present.

EFFICACY AND TIMING OF FUNGICIDES, BACTERICIDES, AND BIOLOGICALS for DECIDUOUS TREE FRUIT, NUT, STRAWBERRY, AND VINE CROPS 2009

(Updated June, 2009)

Use this manual to avoid fungicide resistance! www.ipm.ucdavis.edu

ALMONDPEACH/NECTARINEAPPLE/PEARPISTACHIOAPRICOTPLUMCHERRYPRUNEGRAPESTRAWBERRYKIWIFRUITWALNUT

Jim Adaskaveg, Professor University of California, Riverside

Doug Gubler, Extension Plant Pathologist University of California Davis

Themis Michailides, Plant Pathologist University of California, Davis/Kearney Agricultural Center

Brent Holtz, Farm Advisor University of California Cooperative Extension, Madera County

UC Davis, Dept. of Plant Pathology www.plpnem.ucdavis.edu UC Kearney Agricultural Center www.uckac.edu/plantpath

Statewide IPM Program www.ipm.ucdavis.edu

Almond Scab *Cladosporium carpophilum*

Gray-black, oil-like soft looking spots form on leaves, fruit, and twigs.

Almond Scab *Cladosporium carpophilum*

- Young lesions are indistinct small yellow specks, best seen by holding a leaf up to the light.
- Lesions usually are not visible until late spring or early summer.

Almond Scab *Cladosporium carpophilum*

- The fungus survives in twig lesions, and spores are spread by wind or rain.
- Scab is favored by prolonged wet spring weather,

Almond Scab Cladosporium carpophilum

- Severe scab infections can cause early defoliation
- If left uncontrolled for several years, infected trees become weakened.

Timing of Fungicide Treatments for Scab Control

		Bloom		Spr	ing ¹	Summer		
Disease	Dormant	Pink bud	Full bloom	Petal fall	2 weeks	5 weeks	May	June
Scab ³	++			++	+++	+++	+	

Note: Not all indicated timings may be necessary for disease control.

Rating: +++ = most effective, ++ = moderately effective, + = least effective, and ---- = ineffective

³ Early treatments (during bloom) have minimal effect on scab; the 5-week treatment usually is most effective. Treatments after 5 weeks are useful in northern areas where late spring and early summer rains occur. Dormant treatment with liquid lime sulfur improves efficacy of spring control programs.

Fungicide Timing for Scab

Disease	Dormant	Bloom			Spi	ring	Summer		
		Pink	Full	Petal	2	5			
		bud	bloom	fall	weeks	weeks	May	June	
$Scab^4$	M1+oil, M2 ³			1 ²	12	3	M2 ³		
	M2 ³			$7/11^2$	$7/11^2$	$7/11^{2}$	M4		
				11^{2}	11 ²	11 ²			
				M3	M3	M2 ³			
				M4	M4	M3			
				M5	M5	M4			

Cladosporium has become resistant to strobilurin fungicides (QoI=quinone outside inhibitors, single site mode of action) in orchards of high use and disease pressure.

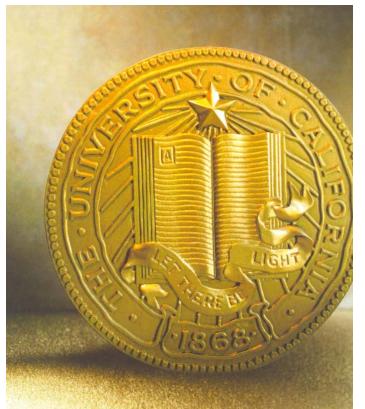
Use dormant treatments of copper and oil or liquid lime sulfur

Rotate groups for each application within a season and, if possible, use each group only once per season, except for multi-site mode of action materials or natural products/biological controls.

Treatment	Rates per acre	Incide	ence ^a
6 Bravo (Chlor	othalonil) ¹ 4 pt, Quadris Top ² 14 fl oz, Inspire Super ³ 20 fl oz	0.0	а
11 Rovral +oil +	Topsin ¹ , 8 fl oz+1%v/v+10 fl oz, Quadris ² ,14 fl oz, Captan ³ , 5lb	s 0.2	а
	isperse ^{1,2,3} 20 lbs	0.4	а
3 Fontelis + Te	bucon $45 \text{DF}^{1,2,3}$, 20 fl oz + 8 oz	0.6	а
17 Merivon SC ¹		0.6	а
	14 fl oz, Bravo (Chlorothalonil) ² 4 pt, Inspire Super ³ 20 fl oz	0.8	а
	Γopsin ¹ , 11.4floz+1%v/v+14 floz, Quadris ² ,14 floz,Captan ³ , 5lbs	0.8	а
	on $SC^{1,2,3}$, 6 fl oz	1.6	а
14 Luna Experie		1.8	а
	$nce^{1,3}$, 6 fl oz, Gem+Serenade Optimum ² , 3.0 fl oz + 8 oz	2.8	ab
	mper $3.6EC^{1,2,3}$, 20 fl oz + 8 fl oz	2.8	ab
	+ Topsin ^{1,2} , 11.4 fl oz+1% v/v + 14 fl oz, Captan ³ , 5 lbs	6.8	b
9 Rovral + oil -	+ Topsin ^{1,2} , 8 fl oz+1% v/v + 10 fl oz, Captan ³ , 5 lbs	7.0	b
16 Pristine ^{1,2,3} , 1		16.6	с
	$m 4.05 \text{SC}^{1,2,3}$, 20 fl oz + 2.9 fl oz	21.0	cd
	bound 2.0 $8F^{1,2,3}$, 20 fl oz + 12 fl oz	24.2	d
	² , 16 fl oz+1% v/v, Captan 80 WG ³ , 5 lbs	24.6	de
1 Fontelis 1.67	SC ^{1,2,3} , 20 fl oz	29.4	e
19 Untreated Co	ntrol	35.0	f
20 Untreated Co	ntrol	35.4	f

^aIncidence = number of nuts that have scab lesions on 45 nuts randomly sampled per tree. Three people rated each tree (Cheryl, Scotty, and Stephen). Data was analyzed by ANOVA with means separated by Fisher's Protected LSD ($\alpha = 0.05$) test. Means followed by the same letter are not significantly different. The trial was rated on August 5th and 6th, 2014. All treatments significantly reduced the incidence of almond scab when compared to our two untreated controls.

The following trial applications are outlined above:


Common 1 Variates

¹First application was performed 2 weeks after petal fall (2WPF) on March 20th.

²Second application was performed 4 weeks after petal fall (4WPF) on April 3rd.

³Third application was performed was 8 weeks after petal fall (8WPF) on May 1st.

Greg Browne, USDA-ARS, Davis, California

Developing Improved Strategies for Management of Replant Problems

Greg Browne, Natalia Blackburn, Hossein Gouran, Gureet Brar, Brent Holtz, David Doll, Andreas Westphal, Amelie Gaudin UC Davis, Department of Plant Pathology

Key Objectives

 Develop non-fumigant approaches for managing replant problems

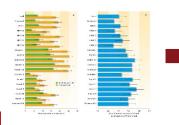
Fumigant performance summary California Agric. 2013. 67:128-138

Alternatives ?

New hybrids vs. standards

Phytophthora

resistance

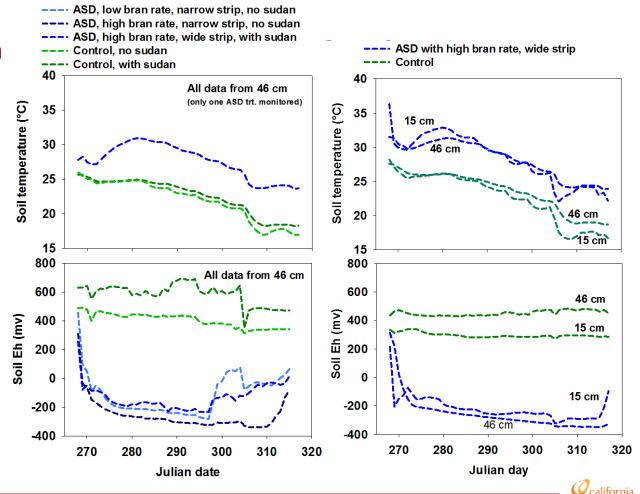

- Develop better understanding of replant disease causes and prediction among fields
- Support development of improved rootstocks

45

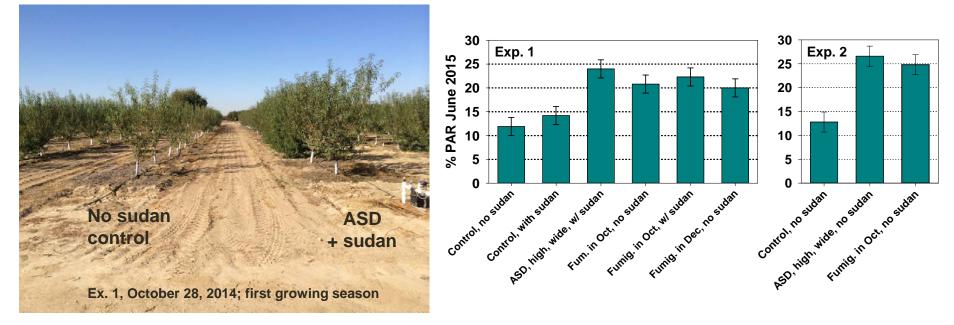
Soil bioassays, replant trials
 High throughput DNA seq
 Further resolution of RD
 Predictive diagnostics?

RD

resistance


Non-fumigant method: Anaerobic soil disinfestation (ASD) 2 years of trials at Kearney Ag Center

Impacts of ASD on temperature


Treatment period was late Sep through Nov

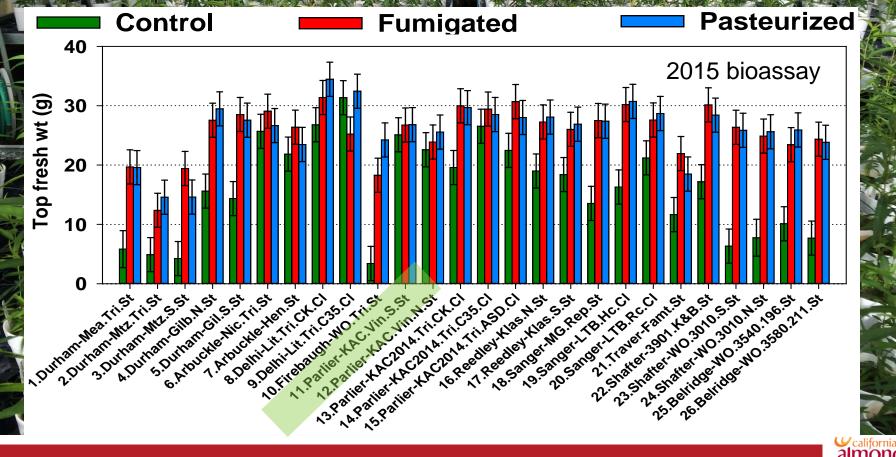
Non-fumigant method: Anaerobic soil disinfestation (ASD)

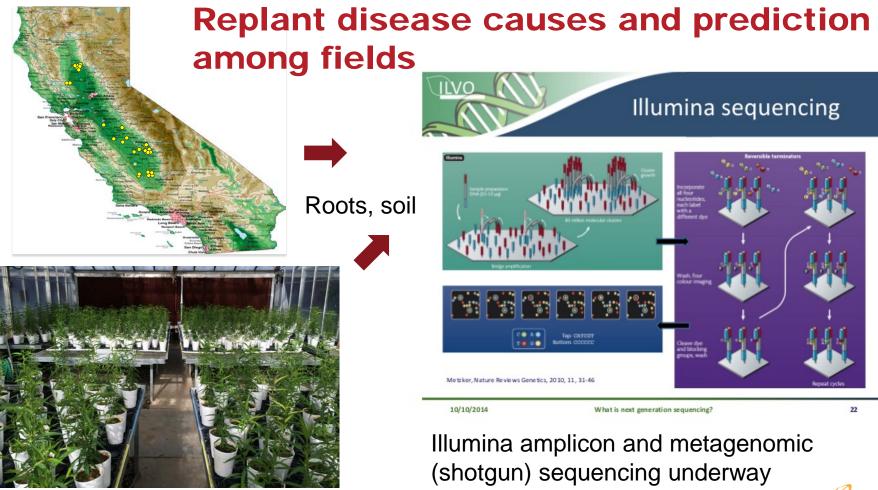
Response <u>1st</u> growing season

Response <u>2nd</u> growing season

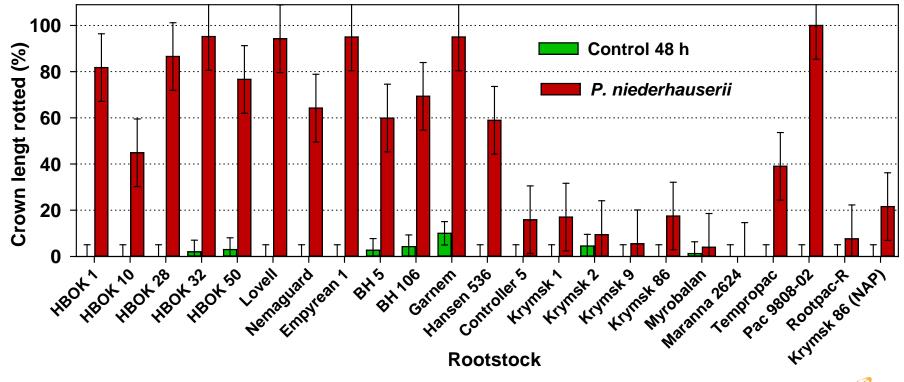
So, ASD "works" for RD, but questions now are econ. feasibility, general applicability...

Replant disease causes and prediction among fields





		Selected properties								
2015 soil number and			CEC	EC	Са	Mg	Na		exch. K	
code ^a	Nominal soil series	рН	(meq/100g)	(dS/m)	(meq/L)	(meq/L)	(meq/L)	SAR	(ppm)	
1. Durham-Mea. Tri. CK. St	Edjobe silty clay	7.81	27.2	0.77	3.56	3.19	0.77	<1	179	
2.Durham-Mtz.Tri.CK.St	Conejo clay loam	7.91	23.7	0.82	3.81	2.68	0.74	<1	276	
3. Durham-Mtz. S. St	Conejo/Busacca clay loam	7.95	23.6	0.96	4.66	3.02	1.06	<1	119	
4.Durham-Gilb.N.St	Almendra loam	7.08	31.8	0.70	2.90	2.70	0.85	<1	153	
5.Durham-Gil.S.St	Conejo clay loam	6.95	37.1	0.55	2.24	1.99	0.73	<1	134	
6.Arbuckle-Nic.Tri.CK.St	Arbuckle sandy loam	5.75	9.8	0.81	2.89	1.81	2.71	2	76	
7.Arbuckle-Hen.St	Arbuckle-Hillgate complex	5.61	11.0	1.44	5.45	4.65	3.61	2	93	
8.Delhi-Lit.Tri.CK.Cl	Delhi sand	6.34	3.2	1.07	5.50	2.38	1.65	<1	32	
9. Delhi-Lit. Tri. C35. Cl	Delhi sand	6.80	2.8	0.50	2.63	1.00	0.83	<1	24	
10.Firebaugh-WO.Tri.CK.St	Dinuba/El Peco fine sandy loam	7.85	6.0	2.98	14.39	2.39	16.00	6	254	
11.Parlier-KAC.Vin.S.St	Hanford fine sandy loam	7.34	4.1	0.59	2.87	1.41	1.31	<1	52	
12.Parlier-KAC.Vin.N.St	Hesperia fine sandy loam	7.57	6.5	0.60	2.74	1.21	1.75	1	63	
13.Parlier-KAC2014.Tri.CK.Cl	Hanford fine sandy loam	7.55	6.0	1.81	7.54	3.73	5.80	2	50	
14.Parlier-KAC2014.Tri.C35.Cl	Hanford fine sandy loam	7.12	5.8	1.69	7.72	3.93	4.15	2	51	
15.Parlier-KAC2014.Tri.ASD.Cl	Hanford fine sandy loam	6.43	6.5	1.26	6.47	3.46	1.33	<1	64	
16.Reedley-Klas.N.St	Hanford course sandy loam	6.80	6.7	1.04	5.48	2.76	1.56	<1	77	
17.Reedley-Klas.S.St	Greenfield sandy loam	7.28	8.0	2.94	21.32	10.17	3.84	<1	65	
18.Sanger-MG.Rep.St	Hanford sandy loam	6.79	7.1	1.62	6.66	7.13	2.08	<1	58	
19.Sanger-LTB.Hc.Cl	Hanford sandy loam	6.18	4.5	1.02	4.70	3.12	1.55	<1	51	
20.Sanger-LTB.Rc.Cl	Ramona loam	6.68	9.3	0.78	2.48	3.09	1.58	<1	92	
21.Traver-Famt.St	Calgro complex	7.60	7.5	1.29	5.94	1.92	4.47	2	79	
22.Shafter-3901.K&B.St	Wasco sandy loam	6.07	4.3	1.78	8.72	1.53	7.19	3	45	
23.Shafter-WO.3010.S.St	Wasco sandy loam	7.57	6.3	1.99	7.16	1.08	12.24	6	117	
24.Shafter-WO.3010.N.Stb	Driver coarse sandy loam									
25.Belridge-WO.3540.196.St	Milham sandy loam	7.68	12.0	3.30	19.34	5.98	11.38	3	99	
26.Belridge-WO.3580.211.St	Panoche clay loam	7.79	18.1	3.02	16.13	4.34	12.46	4	132	


Varied incidence and severity of RD among soils

Rootstock resistance....visit poster?

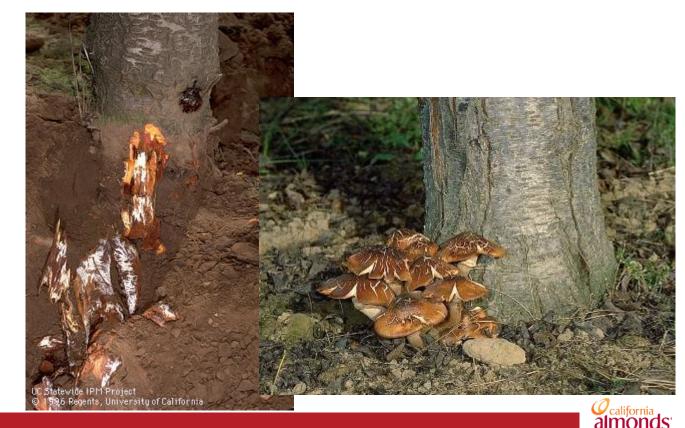
gtbrowne@ucdavis.edu

Acknowledgements:

- Almond Board of California
- Calif. Dept. Pesticide Regulation
- TriCal, Inc.
- Duarte Nursery, Inc.; Burchell Nursery, Inc.

Roger Duncan, UCCE – Stanislaus County

Screening Almond Rootstocks for Resistance to Armillaria Root Rot (Oak Root Fungus)


Roger Duncan, UCCE, Stanislaus County Kendra Baumgartner, USDA - ARS

Armillaria root rot (Oak Root Fungus) is a devastating disease that persists in the soil for many years and for which there is no cure

Recent Laboratory Rootstock Screening Effort by Baumgartner

Average Mortality of Rootstocks Inoculated with Armillaria mellea						
Krymsk 86	27.3 a					
Krymsk 1	35.8 ab					
Marianna 26-24	63.1 bc					
Lovell	71.8 cd					
Empyrean 1	77.8 cd					
Nemaguard	84.5 d					
Brights 5	87.2 d					
Hansen 536	89.1 d					

Next step: confirm laboratory results in potted tree experiment

Rootstocks tested:

- 1. Nemaguard
- 2. Marianna 26-24
- 3. Marianna 40
- 4. Krymsk 86
- 5. Citation
- 6. Rootpac R
- 7. Viking
- 8. Atlas
- 9. Empyrean 1
- 10. Hansen
- 11. Sam-1

Twenty – five replications of eleven rootstocks. October 2015.

Each tree inoculated with peach wood colonized by Armillaria

• Monitor root infection and tree mortality over one year

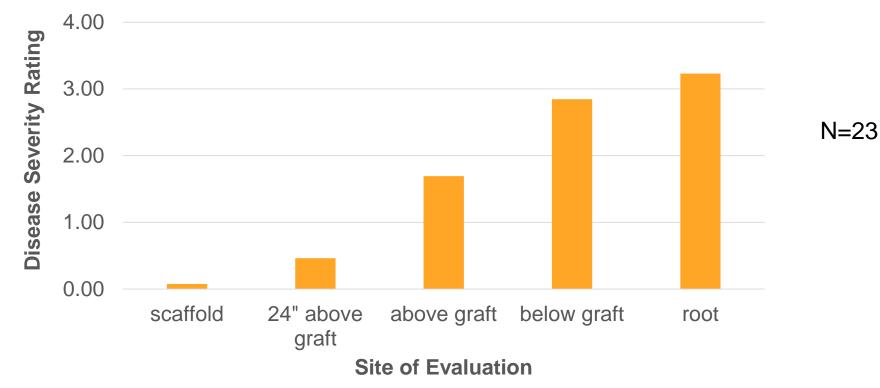
Bob Johnson, University of California, Davis

Wood Decay Fungi

Bob Johnson

Objectives

- Identify the main fungi associated with heart-rot diseases of almond in California
- Determine the infection process in orchards.
- Employ molecular techniques for early detection of decay fungi on standing trees.



- Removed Orchard
- Every 10th tree, Every 5th row
- Disease rating 1-4
- Collected samples

Severity and Incidence of Wood Decay

- Punctularia sp.
- Trametes versicolor
- Psathyrella sp.
- 'Hyphodontia sp.'

Continue Orchard Sampling Employ Molecular Techniques Spore Trapping Inoculations

BobJohnson@ucdavis.edu

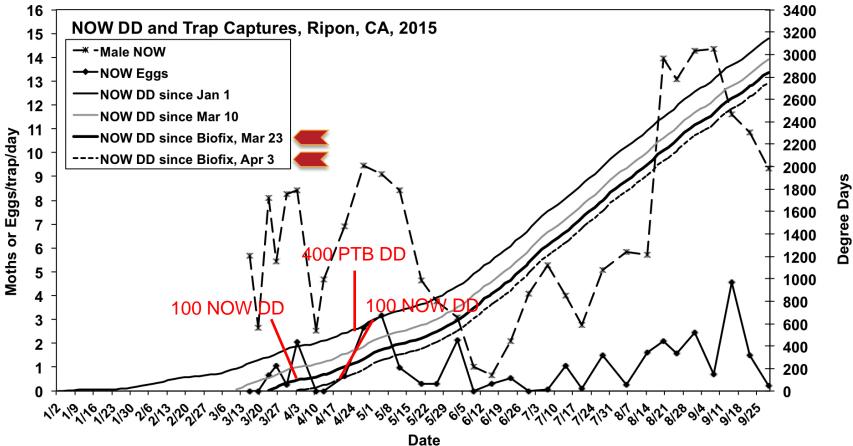
Dave Rizzo, UC Davis, Davis, CA David Doll, UCCE Farm Advisor, Merced County Franz Niederholzer, UCCE Farm Advisor, Yuba/Sutter/Colusa Counties Florent P Trouillas, UCCE Plant Pathology Specialist, Kearney Ag Center Matteo Garbelotto, UC Berkley, Berkeley, CA Luke Milliron, UCCE Intern, Yuba/Sutter/Colusa Counties

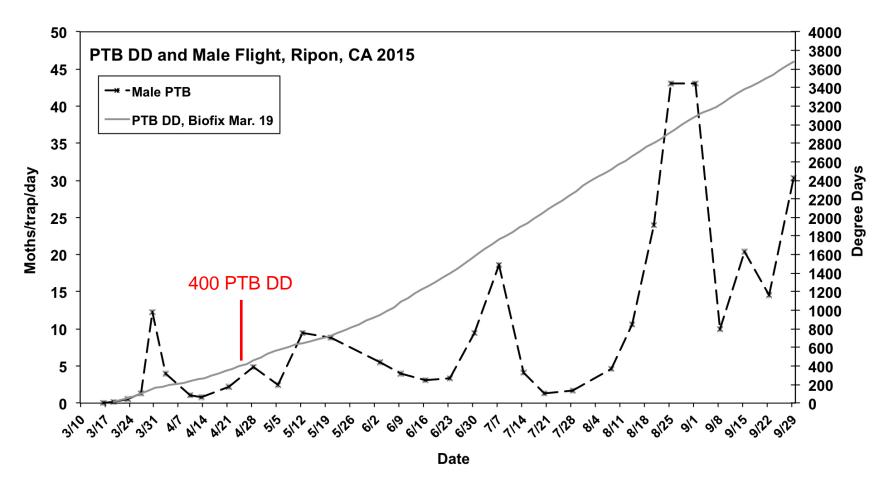
Frank Zalom, University of California, Davis

Insect and Mite Research

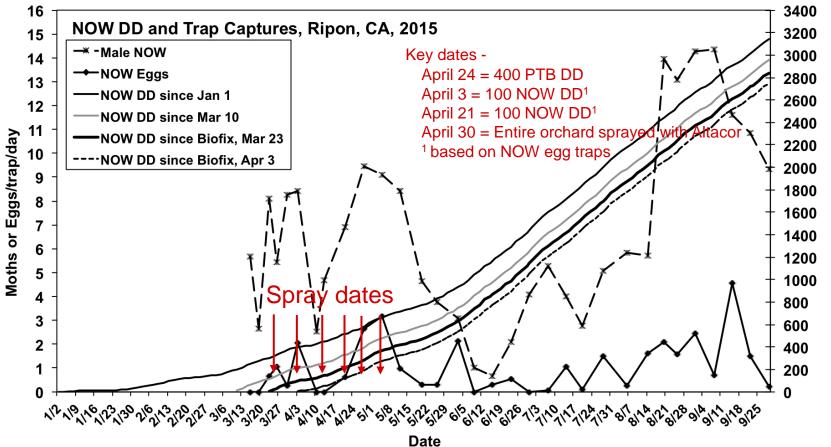
Frank Zalom

Department of Entomology and Nematology University of California, Davis



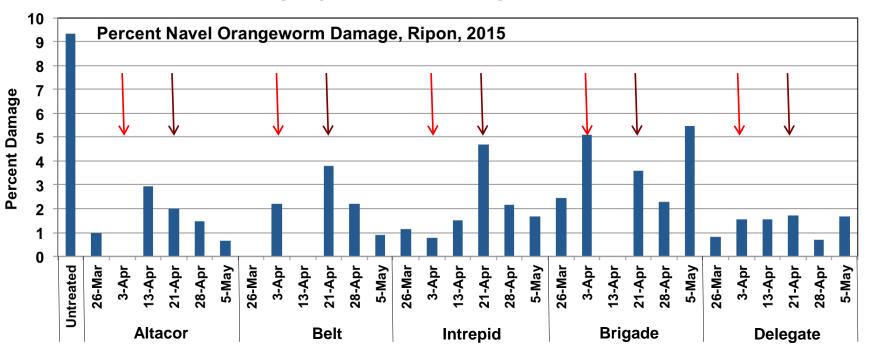

2014-15 NOW Studies

- Spring treatment timing ★
- Residual activity
- Effects of low temperatures on activity ★
- Infestation of pre-infested nuts



Degree Days

Spring treatment timing


Infestation and damage of almond mummies treated with different registered insecticides at weekly intervals starting at the initiation of oviposition of the overwintering flight of navel orangeworm at Ripon, 2015.

Mean % infestation includes nuts with larvae and/or pupae Mean % damage includes nuts with larvae and/or pupae and nuts with some frass or webbing but no larvae present

> Key dates -April 24 = 400 PTB DD April 3 = 100 NOW DD¹ April 21 = 100 NOW DD¹ April 30 = Entire orchard sprayed with Altacor ¹ based on NOW egg traps

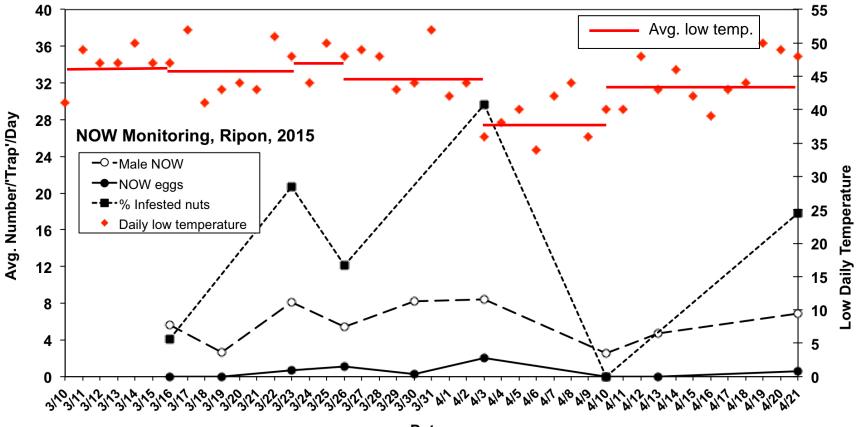
	Spray	5 - Se	Mean + SD ^{1,2}		Mean + SD ^{1,3}				
Treatment	date	Rate/ac	% infestation		% damage				
Control	n/a	n/a	2.01	± 3.39	А	9.35	±	10.72	А
Altacor	3/26	4 oz.	0.00	± 0.00	В	0.96	±	2.72	BCD
Altacor	4/3	4 oz.	0.00	± 0.00	В	0.00	±	0.00	D
Altacor	4/13	4 oz.	1.48	± 2.74	AB	2.95	±	5.48	BCD
Altacor	4/21	4 oz.	0.63	± 1.77	AB	2.02	±	2.80	BCD
Altacor	4/28	4 oz.	0.00	± 0.00	В	1.48	±	2.74	BCD
Altacor	5/5	4 oz.	0.00	± 0.00	В	0.66	±	1.86	CD
Belt	3/26	4 oz.	0.00	± 0.00	В	0.00	±	0.00	D
Belt	4/3	4 oz.	0.00	± 0.00	В	2.22	±	4.54	BCD
Belt	4/13	4 oz.	0.00	± 0.00	В	0.00	±	0.00	D
Belt	4/21	4 oz.	0.83	± 2.36	AB	3.81	±	3.26	BCD
Belt	4/28	4 oz.	0.00	± 0.00	В	2.22	±	3.08	BCD
Belt	5/5	4 oz.	0.00	± 0.00	В	0.89	±	2.53	BCD
Intrepid	3/26	16 oz.	0.00	± 0.00	В	1.14	±	3.21	BCD
Intrepid	4/3	16 oz.	0.00	± 0.00	В	0.78	±	2.21	BCD
Intrepid	4/13	16 oz.	0.00	± 0.00	В	1.52	±	2.81	BCD
Intrepid	4/21	16 oz.	0.00	± 0.00	В	4.71	±	5.27	BCD
Intrepid	4/28	16 oz.	0.00	± 0.00	В	2.17	±	4.34	BCD
Intrepid	5/5	16 oz.	0.83	± 2.36	AB	1.67	±	4.71	BCD
Brigade	3/26	16 oz.	1.67	± 3.11	AB	2.46	±	3.40	BCD
Brigade	4/3	16 oz.	1.25	± 3.54	AB	5.10	±	5.25	BC
Brigade	4/13	16 oz.	0.00	± 0.00	В	0.00	±	0.00	D
Brigade	4/21	16 oz.	1.32	± 2.44	AB	3.59	±	5.04	BCD
Brigade	4/28	16 oz.	1.59	± 2.97	AB	2.28	±	3.19	BCD
Brigade	5/5	16 oz.	2.30	± 4.48	А	5.46	±	5.27	В
Delegate	3/26	17 oz.	0.00	± 0.00	В	0.83	±	2.36	BCD
Delegate	4/3	17 oz.	0.71	± 1.89	AB	1.55	±	2.67	BCD
Delegate	4/13	17 oz.	0.00	± 0.00	В	1.56	±	2.89	BCD
Delegate	4/21	17 oz.	0.00	± 0.00	В	1.73	±	3.20	BCD
Delegate	4/28	17 oz.	0.00	± 0.00	В	0.69	±	1.96	CD
Delegate	5/5	17 oz.	0.00	± 0.00	В	1.67	±	4.71	BCD

¹ Means followed by the same letter do not differ significantly at P=0.05 by Student's t-test ² F=1.4936, df=30,265 p<0.0541 ³ F=2.6559, df=30,265 p<0.0001 Percent damage of almond mummies treated with different registered insecticides at weekly intervals starting at the initiation of oviposition of the overwintering flight of navel orangeworm at Ripon, 2015.

ANOVA statistics, F=2.6559, df=30,265 P<0.0001

Effects of low temperatures on activity

Almond strand method

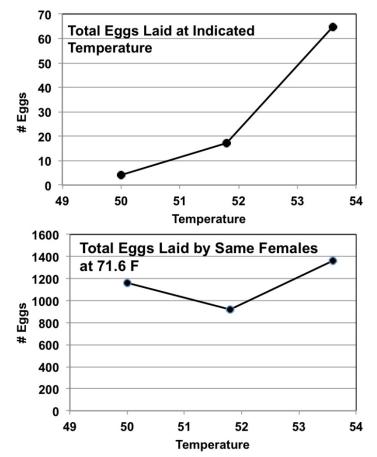


Effects of low temperatures on activity

Almond strand hung during specific periods in spring, then removed

	March	March	March	March 26	April	April
	10-15	16-22	23-25	-April 1	3-9	10-20
Avg. larvae/strand/day	1.5	7.4	8.0	9.1	0.0	3.5
Avg. % infested						
nuts/strand/day	4.1	20.7	12.1	29.6	0.0	17.8
Avg. low temperature	46.8	45.9	47.3	46.3	38.6	44.0
Avg. high temperature	78.2	75.6	71.7	78.0	67.6	76.7
Accumulated DD	56.3	56.1	19.5	74.1	26.2	91.1
Avg. DD	9.4	8.0	6.5	9.3	3.7	8.3
# of strands	10	10	9	10	9	10





Lab virgin females, constant temperature

Wild virgin females, constant temperature

Females held at constant temperatures for 72 hours				
	Total Eggs	% Fertility		
Temp (°F)	Mean ± SD ^{1,2}	Mean ± SD		
50.0	4.0 ± 5.2	0.0 ± 0.0		
51.8	17.3 ± 14.4	0.0 ± 0.0		
53.6	64.7 ± 16.9	0.0 ± 0.0		
2 - 47 - 5264				

² *F*=17.5361, df=2, 8, *P*<0.0031

Females transferred to 71.6°C for 48 hours				
Pre-Temp	Total Eggs Mean ± SD ^{1,3}	% Fertility Mean ± SD ^{1,4}		
(°F)	Mean ± SD ^{1,3}	Mean ± SD ^{1,4}		
50.0	1164.0 ± 191.3	3.9 ± 5.0		
51.8	918.7 ± 418.6	4.4 ± 7.5		
53.6	1360.7 ± 510.9	0.4 ± 0.7		
³ <i>F</i> =0.9333, df=2, 8, <i>P</i> <0.4437				

⁴ F=0.508, df=2, 8, P<0.625

Total eggs laid during the first 72 hours after placing 20 virgin females and males from F1 offspring of lab colony or wild collected NOW larvae in containers at 3 variable temperatures, and percent fertility of those eggs held at 71.6°F.

	-	
Max./Min.	Total Eggs Mean ± SD ¹	% Fertility Mean ± SD ²
Temp (°F)	Mean \pm SD ¹	Mean \pm SD ²
60.8/41.0	171.3 ± 107.2	15.1 ± 10.2
64.4/44.6	173.0 ± 74.6	32.6 ± 14.5
68.0/48.2	347.3 ± 41.2	62.6 ± 12.5

Wild virgin females, variable temperature

¹ *F*=4.9098, df=2, 8, *P*<0.0546

² F=11.0423, df=2, 8, P<0.0098

Lab virgin females, variable temperature

Max./Min.	Total Eggs Mean ± SD ¹	% Fertility Mean ± SD ²		
Temp (°F)	Mean \pm SD ¹	Mean \pm SD ²		
60.8/41.0	489.0 ± 198.5	33.7 ± 9.5		
64.4/44.6	535.0 ± 125.0	41.1 ± 20.8		
68.0/48.2	764.3 ± 250.1	54.4 ± 7.4		

¹ F=1.6653, df=2, 8, P<0.2659

² *F*=1.7190, df=2, 8, *P*<0.2569

Mark Demkovich, University of Illinois

Detoxification of insecticides by navel orangeworm (NOW)

Mark Demkovich, University of Illinois at Urbana-Champaign Vikram Bagchi, University of Illinois at Urbana-Champaign Joel Siegel, USDA-ARS, Parlier, CA Spencer Walse, USDA-ARS, Parlier, CA May Berenbaum[,] University of Illinois at Urbana-Champaign

Research Objectives

- Using our bifenthrin-resistant (R347) and susceptible (CPQ) navel orangeworm colonies, conduct neonate feeding assays to calculate median-lethal concentrations of pesticides (chlorantraniliprole, methoxyfenozide, flubendiamide) and phytochemicals (furanocoumarins, chlorogenic acid).
- 2. Apply synergists piperonyl butoxide (PBO), diethyl maleate (DEM), and S,S,S-tributyl phosphorotrithioate (DEF) with an LC₅₀ dose of each insecticide to determine if cytochrome P450s, GSTs, and/or esterases, respectively, are involved in detoxification
- 3. Use the Parlier USDA-ARS spray tower to test effects of adjuvants on pesticide toxicity to eggs and sublethal effects on survivors from R347 and CPQ colonies.
- 4. With the newly available NOW genome, compare our susceptible CPQ strain with the R347 resistant strain by deep-sequencing transcriptomes, mapping the cDNA reads to the reference genome, and identifying differences in detoxification loci that distinguish the strains

Insecticides and Adjuvants Tested

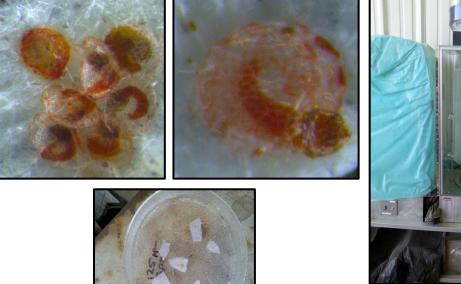
Diamide Insecticides (IRAC Group 28)

- Chlorantraniliprole (Altacor®)
- Flubendiamide (Belt®)

Methylated Seed Oils (Penetrators)

- Dyne-Amic[™]
- FastStrike[™]

Wetter-Spreader


Induce[™]

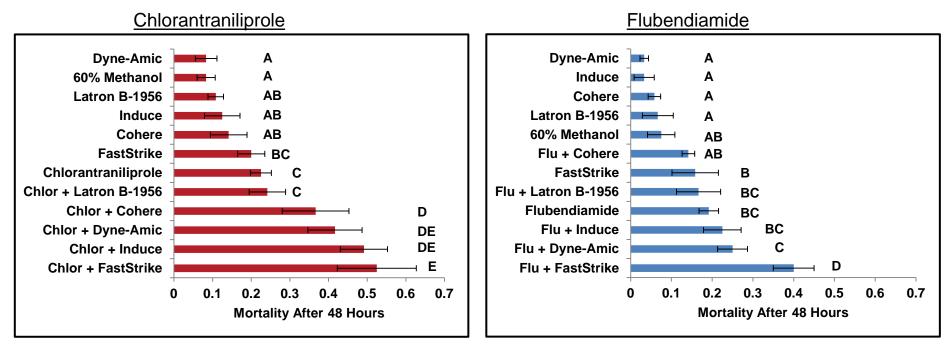
Spreader-Sticker

- Cohere[™]
- Latron B-1956[™]

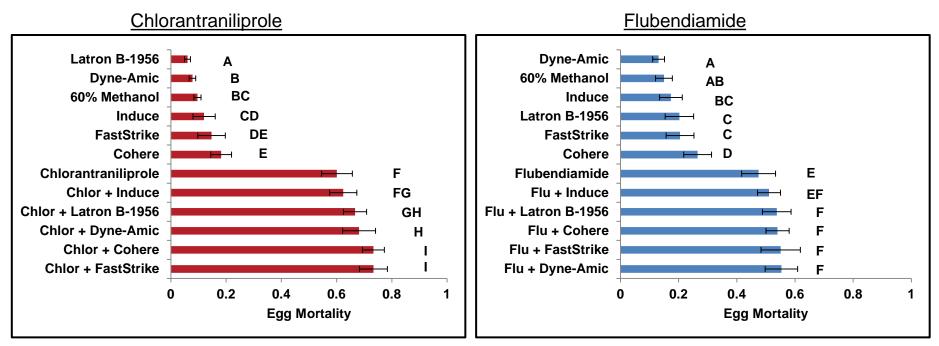
Methods

10 ml Sprays of Chlorantraniliprole and Flubendiamide at 125 ppm + Adjuvants in 60% Methanol

Adjuvant Application Rates:


- Dyne-Amic: 8 oz/100 gal
- FastStrike: 64 oz/100 gal
- Induce: 8 oz/100 gal
- Cohere: 8 oz/100 gal
- Latron B-1956: 3.5 oz/100 gal

Susceptible (CPQ) strain of NOW


Results-Adult Sprays

Controls and treatments: 40 adults, equal sex ratio, 3 replicates (n=120) Mortality Assessed at 24, 48, and 72 hours

Results-Egg Sprays

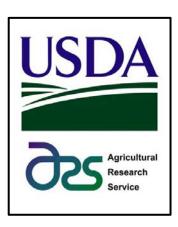
Controls and treatments: 250 eggs per spray, 3 replicates (n=750) Larval Mortality and Egg mortality assessed after 2 weeks

Conclusions

- FastStrike was the only adjuvant that was more toxic than the 60% methanol carrier solution among the controls in adult/egg assays with chlorantraniliprole
- FastStrike increased mortality for both chlorantraniliprole and flubendiamide when applied to adults and eggs
- Egg mortality was enhanced by each class of adjuvant except for the wetter-spreader Induce for both chlorantraniliprole and flubendiamide
- Navel orangeworm may be more vulnerable to certain insecticide-adjuvant combinations at different stages in its life cycle
- If adjuvants have differential impact on the toxicity of current insecticides used to control navel orangeworm, then this may result in new chemical management strategies that incorporate effective insecticide-adjuvant combinations in field sprays.

Matt Rodriguez

Erik Rangel


Siegel Laboratory

Walse Laboratory

Almond Board of California

Acknowledgments

Daniel Bush, University of Illinois

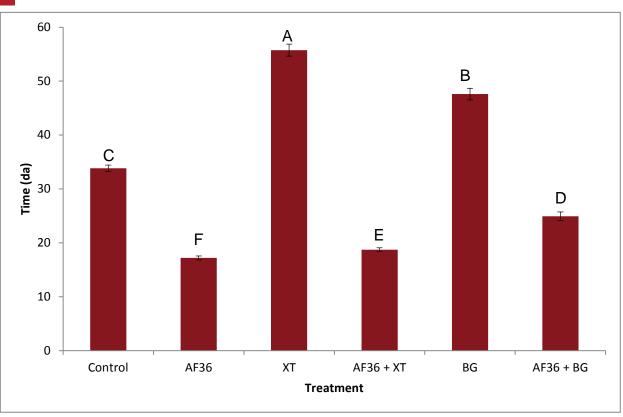
The Relationship of the Navel Orangeworm with Aspergillus flavus

Daniel S. Bush¹ Joel P. Siegel² May R. Berenbaum¹

¹Department of Entomology, UIUC; ²USDA-ARS

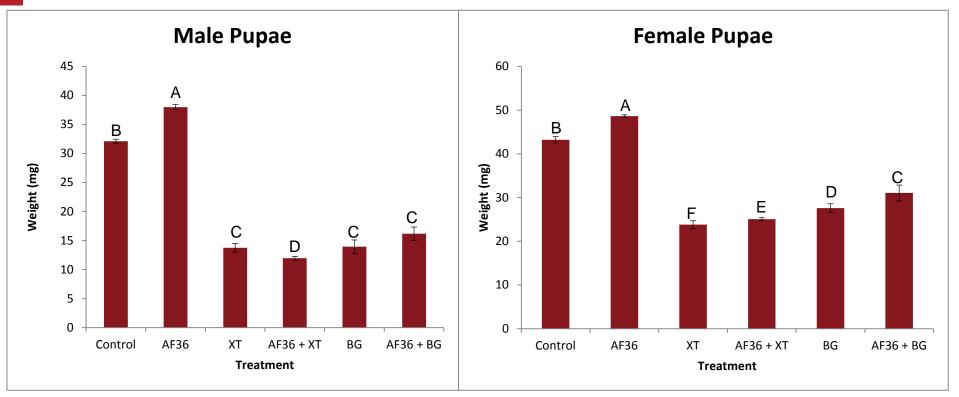
Introduction: A Facultative Mutualism

- The navel orangeworm (*Amyelois transitella*) is frequently associated with fungal pathogens.
- Aspergillus flavus is a common crop pathogen that produces ochratoxins and carcinogenic aflatoxins.
- Together they are perhaps the most economically damaging pest complex in California orchards (Zalom 2012).
- There is evidence (Palumbo et al. 2014, Ampt et al. 2015) of a mutualism between these two pests.


Objective 1: Larval Performance

- Do NOW larvae perform better (i.e. grow faster, larger) in the presence of *A. flavus*?
- Caterpillars from a laboratory colony of *A. transitella* were raised under conditions of 28 ± 4°C with a 16:8 (L:D) hour photoperiod.
- Third instar caterpillars were placed on almond potato dextrose agar (PDA) diet with and without *A. flavus* and with and without xanthotoxin or bergapten (furanocoumarins found in some hosts).

 Stage-specific life tables were created, and significant differences in time to pupation and pupal weight were determined via ANOVA.


Results 1: Larval Growth Rate

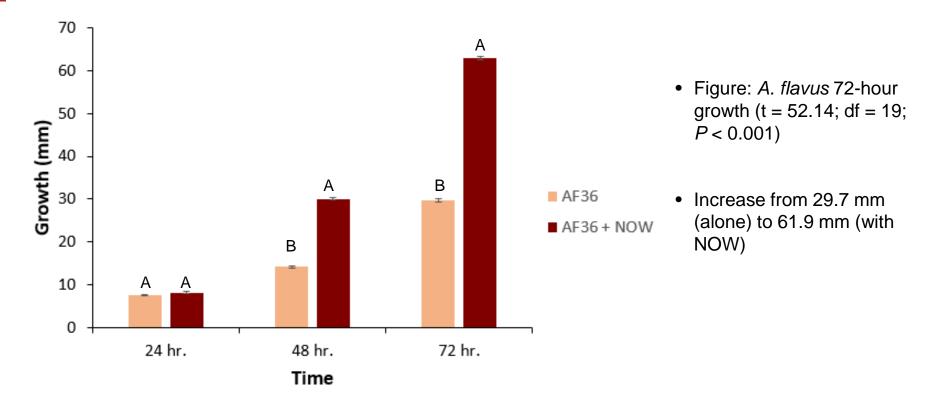
- Figure: time to pupation for larvae raised on control diet, with and without *A. flavus* (AF36), and with and without xanthotoxin (XT) or bergapten (BG).
- Diet (P < 0.001), A. flavus presence (P < 0.001), and the interaction of diet and fungal presence (P < 0.001) had significant effects on development time.

Results 1 (Continued): Pupal Weights

(F = 328.09; df = 5; P < 0.001)

Objective 2: Fungal Performance

Is there also a growth benefit for Aspergillus flavus?


• AF36 inoculum was placed on almond PDA with and without NOW larvae.

• Fungal growth was monitored for 72 hours; growth was determined by averaging colony diameter from four axes (due to irregular colony shape in the presence of larvae).

• Differences in 72-hour growth analyzed via paired *t*-test.

Results 2: Fungal Growth Rate

Discussion

• Do NOW larvae perform better (i.e. grow faster larger) in the presence of A. flavus?

- <u>Yes</u>, growth rate, mortality, and pupal weight improve.
- This is also true (to a lesser extent) even in the presence of furanocoumarins.
- Is there also a growth benefit for Aspergillus flavus?
 - Yes, 72-hour growth improves.

 These results lend support to a facultative mutualism between the navel orangeworm and Aspergillus flavus and suggest that A. flavus may be capable of detoxifying furanocoumarins.

errorts should address both pests in order to reduce direct and indirect damage to

Acknowledgments

- Thanks to Mark Demkovich, Katie Dana, and the Berenbaum lab for help with navel orangeworm rearing and methods
- Thanks to Daniel Raudabaugh and Dr. Andy Miller for help with fungal methods and to Dr. Themis Michailides for providing AF36

Jay Rosenheim, University of California, Davis

Sampling methods and development of thresholds for use under conventional and mating-disruption based management of navel orangeworm

Jay Rosenheim & Bradley Higbee

Navel orangeworm management

- Traditionally, has relied on insecticide sprays at hullsplit
 - Resistance is a growing problem
 - Spider mite outbreaks
- Historical difficulty: accurately estimating NOW densities
 - NOW is damaging at very low densities
 - Egg traps used primarily to time insecticides, not to decide if a treatment is needed

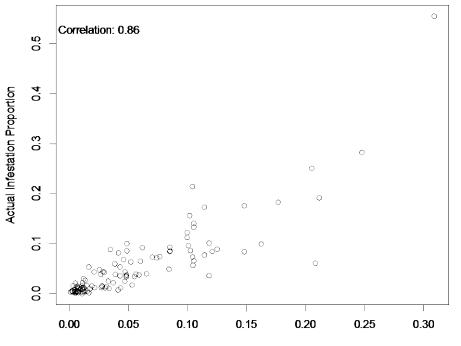
New tools for NOW management

- Mating disruption
 - Effective, but supplementary sprays may still be needed
- Pheromone lures provide new tool for estimating NOW density
 - But, trap shut-down under mating disruption may render pheromone traps ineffective as a population monitoring device
 - We need to quantify trap shut-down
 - Lures may still provide useful information about edge effects and to monitor the disruption of sexual communication

Many *possibly* useful methods for estimating NOW population size:

- Prior-year infestation of crop
 - Estimate of 'starting' population size
- Mummy nut densities and infestation % after sanitation
- Egg traps
 - Efficiency may decrease at low NOW densities due to limited area of attraction
- Adult female traps, using almond meal as an attractant
- Pheromone traps
 - Not as useful with mating disruption
- Pre-harvest samples of new nuts with split hulls
 - NOW on nuts with early hull split may be 'diluted' as more hulls split

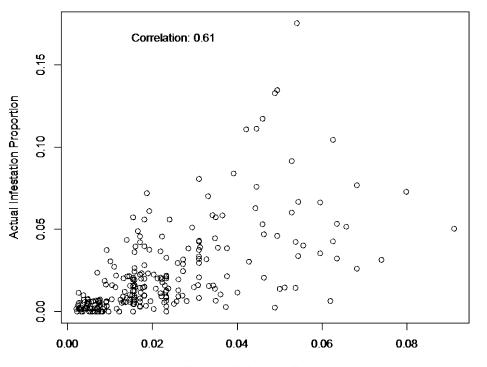
 \rightarrow Which of these is most useful? (. . . Accurate, easy)


Project will work strictly with pre-existing dataset:

- Area-wide mating disruption trials directed by Brad Higbee (Wonderful Orchards, formerly Paramount Farming)
 - Two locations
 - 2009-2014
 - Conventional and mating-disruption management

Can we predict crop infestation with enough accuracy?

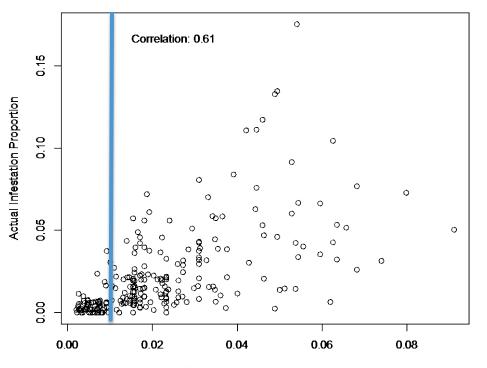
LMD: Infestation Prediction Using Post-MD Delta/Ovip Traps



Predicted Infestation Proportion

Can we predict crop infestation with enough accuracy?

CONV: Infestation Prediction Using Season-Average Pheromone Traps



Predicted Infestation Proportion

Can we predict crop infestation with enough accuracy?

CONV: Infestation Prediction Using Season-Average Pheromone Traps

Predicted Infestation Proportion

Research goals:

- Determine which sampling method is the best predictor of crop infestation
- Develop thresholds for use with conventional and mating-disruption management

Ring Carde, University of California, Riverside

Monitoring the Adult Navel Orangeworm Moths with Pheromone and Host-Plant Volatiles

• Ring Cardé, Nancy Power, Brad Higbee¹ and John Beck²

• Department of Entomology, University of California, Riverside CA, 92521 USA

• ^{1.} Wonderful Orchards ^{2.} Agricultural Research Service, Albany

Quest for host-plant volatiles that induce attract mated females perhaps males.

Tested many volatiles identified by John Beck and colleagues

- We have tested in a wind tunnel host-plant volatiles at 3 doses (10, 100 and 1000 micrograms) with and without a pheromone lure for males and 3 doses of volatiles (without pheromone) for females. Among the compounds tested so far are octanal plus nonanal, sabinene, (*Z*)-3-hexenal, (*Z*)-3-hexenal plus (*Z*)-3-hexenol, 3-octen-2-one, methyl salicylate, sabinene hydrate, linalool, limonene, a pistachio blend and other compounds. Each treatment is tested with 20 males (140 males/host volatile and 60 mated females/host volatile).
- These compounds were selected for behavioral work because they were predominant in airborne collections and electroantennogram active.


New study related to mating disruption—does the presence of pheromone from a mating disruption formulation alter calling and possible dispersal?

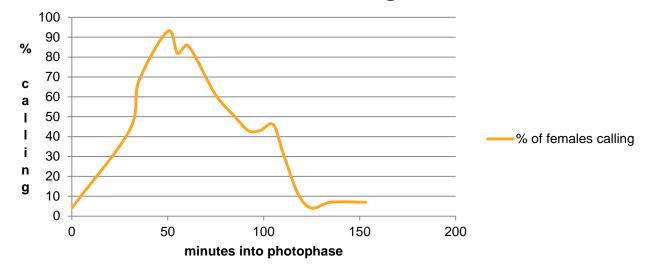
Precedent in other moths—presence of synthetic pheromone or nearby calling females generally advances calling, depleting her pheromone and making her less likely to attract a mate.

Do females (like males) need the complete (4-component) blend?

Calling in the almond moth is distinctive—but when does it occur?

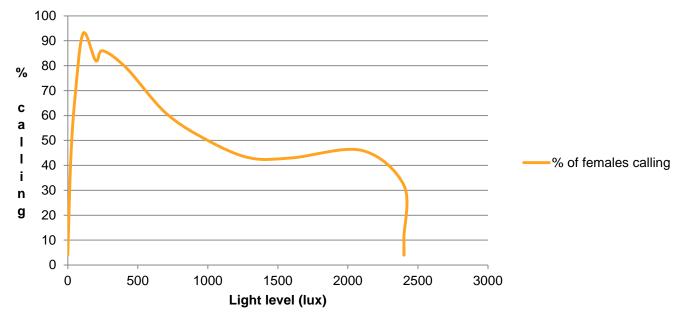
Female navel orangeworm calling periodicity under a gradual increase in light from below moonlight level

Hours into photophase	Light level (lux)	% of females calling
0	*	04
0:30	22	43
0:35	53	68
0:50	110	93
0:55	200	82
1:00	250	86
1:05	420	79
1:15	700	61
1:25	1000	50
1:32	1300	43
1:38	1600	43
1:45	2100	46
1:50	2400	32
1:58	2400	11
2:05	2400	04
2:15	2400	07
2:33	2400	07


*not detectable by light meter, but light table was on at a low setting

Light levels were measured with a Gossen Ultra Pro light meter set for reflected light. The meter sensor was pointed down at the light table from 5 cm above the table.

n=28



% of females calling v. time

% of female navel orangeworm calling vs. light level

Next steps—check to see if the rhythm is endogenous (circadian).

Do nearby females influence calling in their neighbors?

If so, is this contingent of the complete (4-component) blend?

The quest for attractive volatiles continues

Understanding if possible female responses to her own pheromone ("autodetection") contributes to mating disruption

John Beck, USDA-ARS, Albany, California

Host Plant Volatile Blend to **Monitor NOW Populations**

John J. Beck 🎽

Bradley S. Higbee Wonderful orchards.

Synthetic Host Plant Volatile Blend

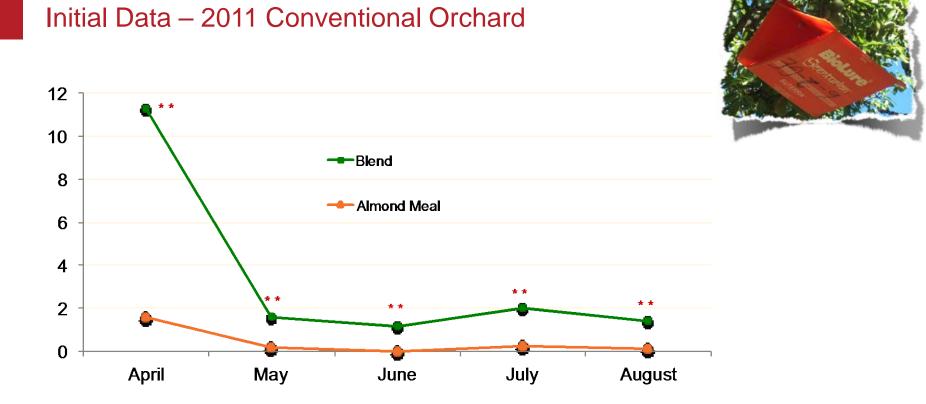
J. Agric. Food Chem. 2012, 60, 8090-8096

pubs.acs.org/JAFC

Hull Split and Damaged Almond Volatiles Attract Male and Female Navel Orangeworm Moths

John J. Beck,^{*,†} Bradley S. Higbee,[‡] Douglas M. Light,[†] Wai S. Gee,[†] Glory B. Merrill,[†] and Jennifer M. Hayashi[†]

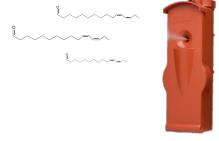
[†]Plant Mycotoxin Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States


^{*}Paramount Farming Co., 33141 E. Lerdo Highway, Bakersfield, California 93308, United States

Male and female moths captured/trap/week

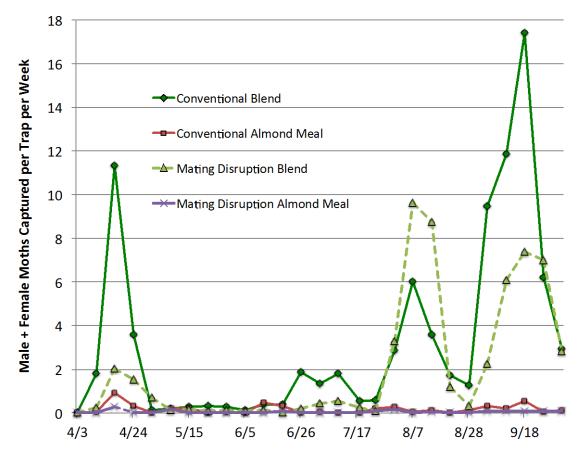
Consistency – Conventional Orchard

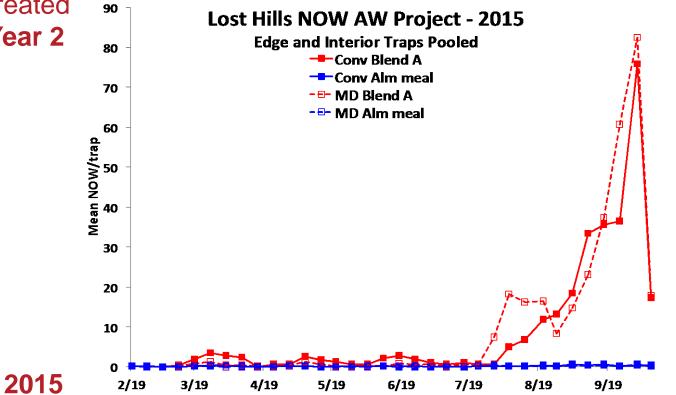
- Superior performance over almond meal proven in conventional orchard (8-13x better)
 - 2011
 - 2012
 - 2013

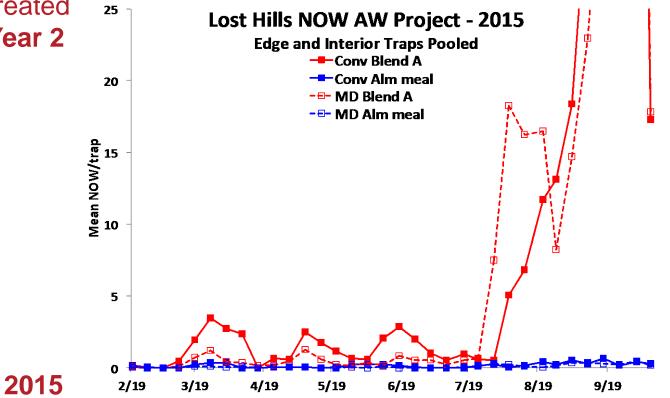


Consistency – Conventional Orchard

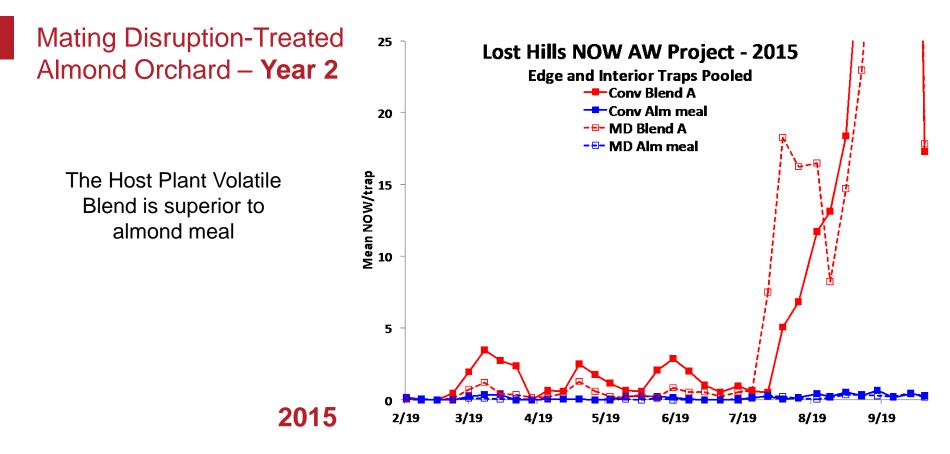
- Superior performance over almond meal proven in **conventional** orchard (8-13x better)
 - 2011
 - 2012
 - 2013

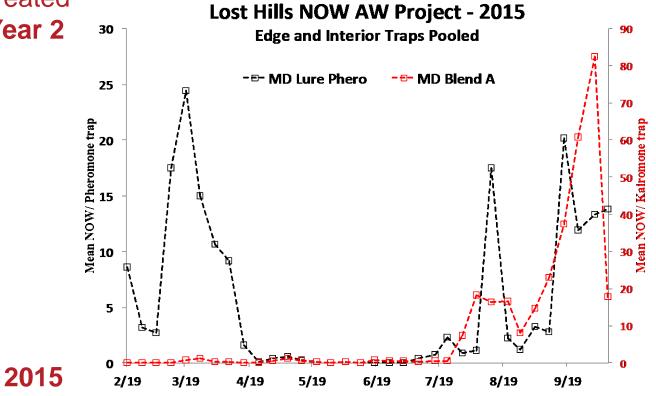


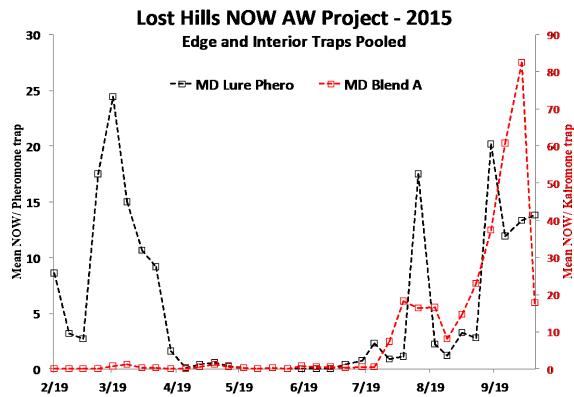


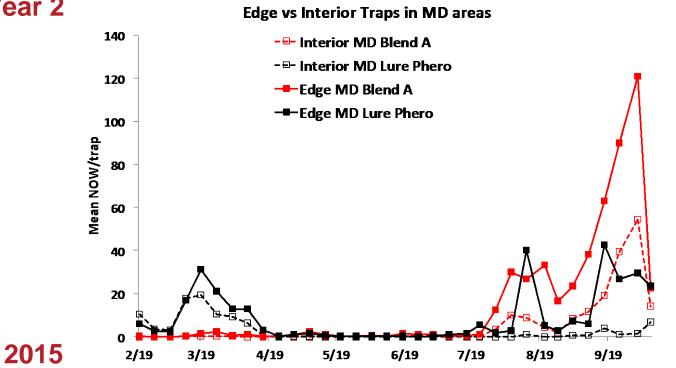


California almonds'


2014

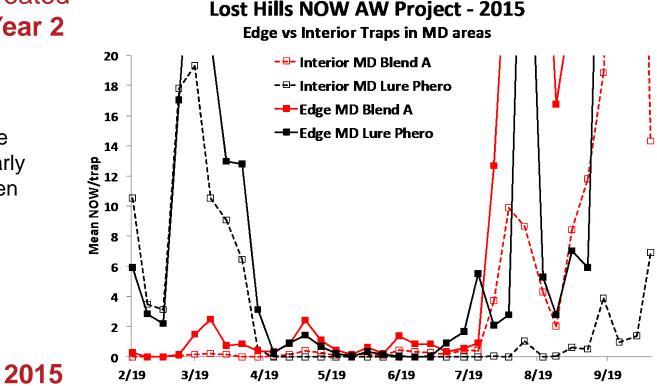






Pheromone blend and the Host Plant Volatile Blend show similar population dynamic trends in later months

Lost Hills NOW AW Project - 2015

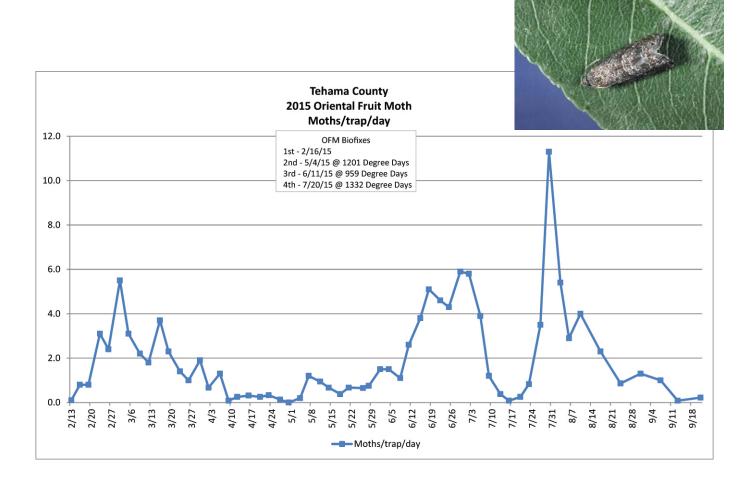


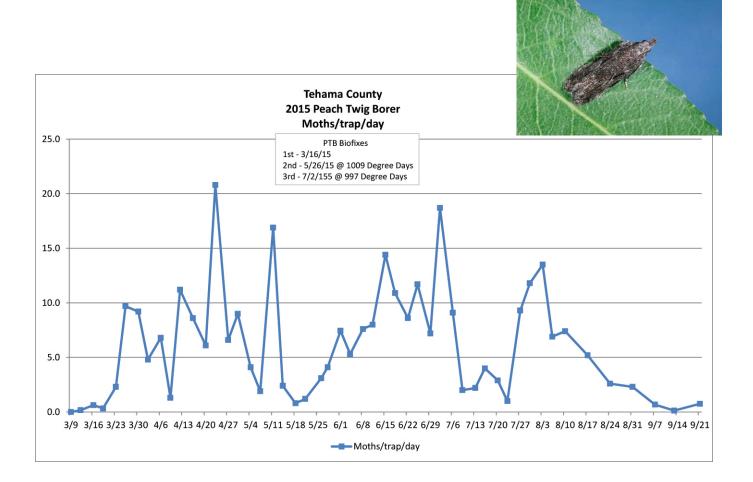
Host Plant Volatile Blend shows good interior and exterior resolution in later months...

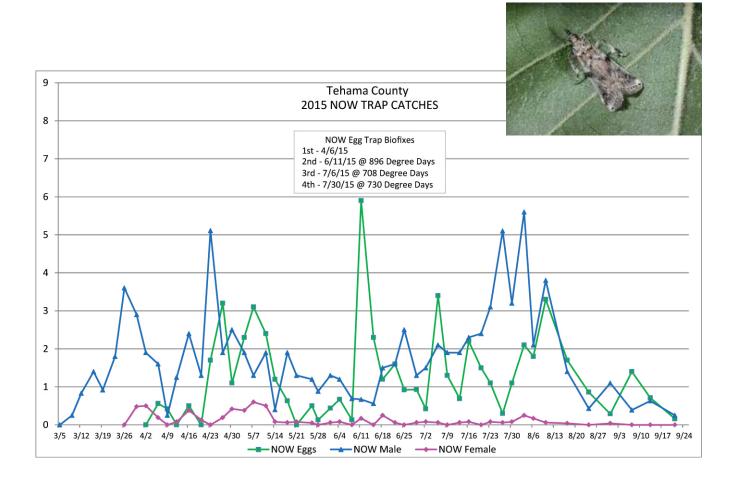
...but does show some resolution for edge in early and middle months when closely evaluated

The Blend in MD and Conventional Orchards

- Provides more sensitive population dynamics information in MD environments
 - relative to sex pheromone or almond based attractants
- Interior versus exterior captures valuable for identifying risk from outside sources
- Correlations to damage in both conventional and mating disruption orchards *being analyzed from 1st and 2nd year*
- Need one more year of data


Richard Buchner, UCCE - Tehama/Shasta Counties




Monitoring and Reporting of Almond Insect Pest Dynamics in Tehama County

Richard P. Buchner, UCCE Tehama/Glenn/Butte Counties Cyndi K. Gilles, Tehama Research Assistant

NOW 2015 Tehama Almonds

- Female traps did not catch many females
- Male NOW emerged ahead of females
 Male activity did not clearly mirror female flight or egg laying

University of California Integrated Pest Management Insect Update #29 Tehama County 9/21/15

INSECT	FIRST BIOFIX	SECOND BIOFIX	THIRD BIOFIX	FOURTH BIOFIX	ACTIVITY MOTHS/DAY	AVG. DEG. DAYS/DAY	DAY DEGREES FROM BIOFIX
CODLING MOTH	3/16	5/26	7/13	-	.13	18.4	1829
ORIENTAL FRUIT MOTH	2/16	5/4	6/11	7/20	.22	23.4	1957
PEACH TWIG BORER	3/16	5/26	7/2	-	.75	18.3	2115
NAVEL ORANGE WORM EGGS	4/6	6/11	7/6	7/30	.16	13.4	1101
SAN JOSE SCALE	3/9	-	-	-	-	17.3	4056
WALNUT SCALE	5/4	8/10			-		

Additional Pest management information is available at the UC IPM website including a day degree calculator. <u>http://www.ipm.ucdavis.edu</u>.

Tehama Pest management updates are also available at http://cetehama.ucanr.edu/Orchard_Crops/Insect_Updates

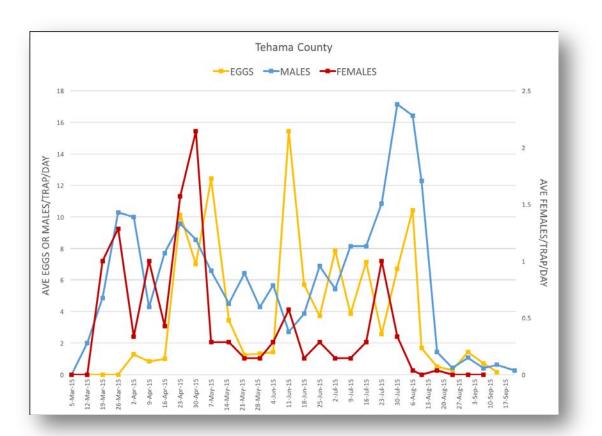
Richard P. Buchner and Cyndi K. Gilles Orchard Advisor & Research Associate UC Cooperative Extension Tehama County (530) 527-3101

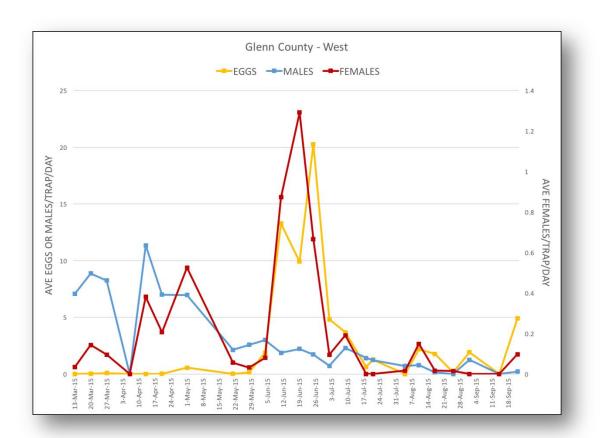

Emily Symmes, UCCE IPM Advisor

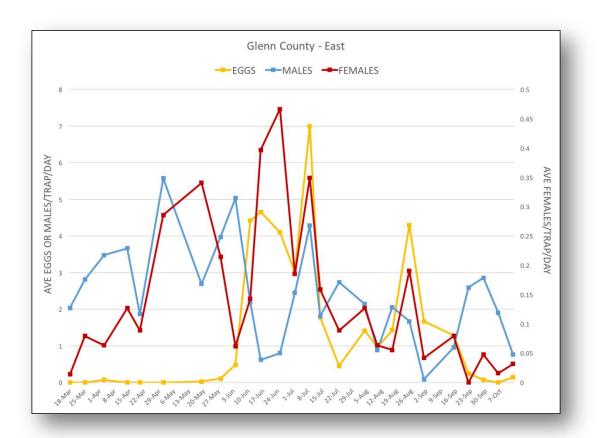
Navel Orangeworm Monitoring in the Sacramento Valley

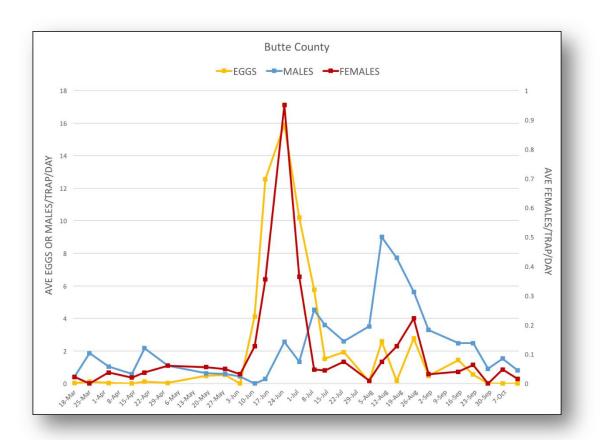
Emily J. Symmes University of California Area IPM Advisor, Sacramento Valley

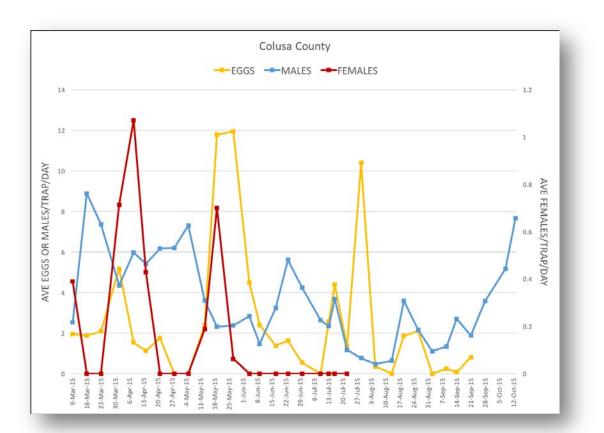
2015 NOW Trapping Sacramento Valley, CA

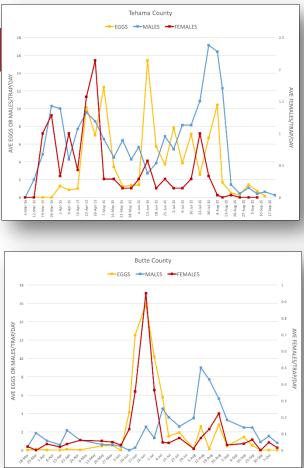

5 sites, 4 counties

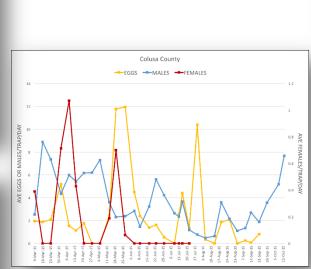


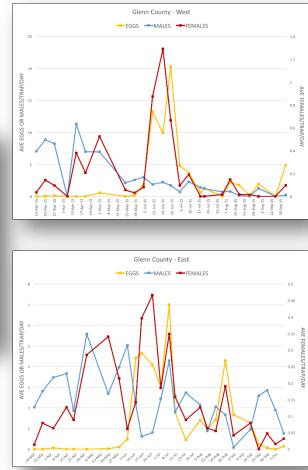












Kris Tollerup, UCCE IPM Advisor

Research Update: Leaffooted Bug, and Navel Orangeworm

K. Tollerup, UC Cooperative Extension Advisor, IPM

Hemipteran, Leaffooted Bug

- Leaffooted bugs identified in San Joaquin Valley
 - Leptoglossus clypealis.
 - Leptogolssus zonatus.
 - Leptoglossus occidentalis?

Monitoring Tools

- Possible tools for monitoring during the early season
 - Pheromone, likely involved in aggregation.
 - Color traps: red, yellow, green, white, and clear.
 - Plant volatile compounds.

Monitoring Tools

- Tested various oils
 - Almond
 - Avocado
 - Coconut
 - -Olive
 - Peanut
 - -Walnut

Monitoring Tools

Table 2. Toxicity of various insecticides against adult leaffooted bug.

Treatment	LFB caged on <i>in situ</i> pistachio clusters at five times after treatment. Mean survival ± SEM (N = 14, n = 4)						Spray applied on LFB in laboratory. Mean survival ± SEM (N = 40, n = 4)
	24 h	7 d	14 d	21 d	28 d		24 h
Untreated control	94 ± 6.3	88 ± 13	100	100	100		88 ± 5
Brigade	0	0	0	6 ± 6.3	25 ± 5		
Warrior	44 ± 25	69 ± 16	75 ± 2.5	88 ± 13	75 ± 35		
Belay	94 ± 0 .3	94 + 6.3					5 ± 3
Beleaf	94 ± 6.3	94 ± 6.3	100	100			93 ± 3
Bexar	88 ± 7.2	69 ± 19		100			3 ± 3
Closer	94 ± 6.3	88 ± 6.3					
Exirel	100	81 ± 12	88 ± 7.2				0
Sivanto	88 ± 7.2	100					

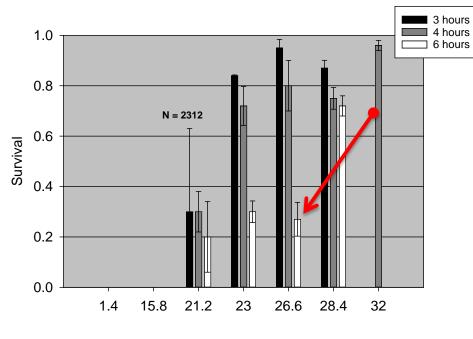
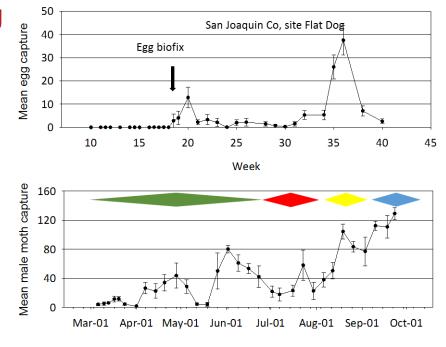


Table 2. Toxicity of various insecticides against adult leaffooted bug.

						-		
Treatment	after trea	LFB caged on <i>in situ</i> pistachio clusters at five times after treatment. Mean survival ± SEM (N = 14, n = 4)					Spray ap LFB in lat Mean su SEM (N	ooratory.
	24 h	7 d	14 d	21 d	28 d	Ι	24 h	
Untreated control	94 ± 6.3	88 ± 13	100	100	100		88 ± 5	
Brigade	0	0	0	6 ± 6.3	25 ± 5			
Warrior	44 ± 25	69 ± 16	75 ± 2.5	88 ± 13	75 ± 35	Γ		
Belay	94 ± 6.3	94 ± 6.3					5 ± 3	
Beleaf	94 ± 6.3	94 ± 6.3	100	100			93 ± 3	
Bexar	88 ± 7.2	69 ± 19		100			3 ± 3	
Closer	94 ± 6.3	88 ± 6.3						
Exirel	100	81 ± 12	88 ± 7.2			Ι	0	
Sivanto	88 ± 7.2	100						

Leaffooted Bug, Cold Threshold



Temperature °F

Navel Orangeworm: Monitoring

- Study to determine relationship between egg and male moth capture.
 - Two-year study
 - Eighteen field sites in six counties
 - Kern, Fresno, Madera, Merced, Stanislaus, Glenn

Date

Table 3. Navel orangeworm egg and male moth capture 2014

		Biofix		Mean male capture at	Date (1056 DD from			
Site	County	(egg)	week	egg biofix	biofix)	700	1400	2100
Forty-five	Kern	11-Apr	15	11.2 (2.8)	28-Jun	16-May	24-Jun	24-Jul
Forty-eight	Kern	29-Apr	18	1.8 (.5)	30-Jun	16-May	24-Jun	24-Jul
Selma	Fresno	no biofix						
Ave 21	Madera	14-Apr	16	26.3 (3.7)	26-Jun	27-May	2-Jul	31-Jul
Ave 19	Madera	19-Apr	17	14 (5.9)	28-Jun	27-May	2-Jul	31-Jul
Atwater	Merced	14-Apr	16	27.3 (3.1)	24-Jun	9-May	19-Jun	20-Jul
Ва	Merced	14-Apr	16	46 (8.5)	24-Jun	9-May	19-Jun	20-Jul
Gb	Merced	14-Apr	16	0.66 (0.33)	24-Jun	9-May	19-Jun	20-Jul
La Grand	Merced	14-Apr	16	63.3 (8)	24-Jun	9-May	19-Jun	20-Jul
Rd	Merced	14-Apr	16	11 (1.7)	24-Jun	9-May	19-Jun	20-Jul
Gz	Merced	17-Apr	16	11.7 (2.7)	25-Jun	9-May	19-Jun	20-Jul
	San							
Flat Dog	Joaquin	18-Apr	16	34 (11.1)	4-Jul	12-May	14-Jun	1-Aug
Delta	San							
College	Joaquin	21-Apr	17	18 (1.5)	5-Jul	12-May	14-Jun	1-Aug
GB	Yolo	11-Apr	15	5.7 (0.9)	25-Jun	7-May	21-Jun	26-Jul
MA	Yolo	10-Apr	15	6.3 (2.8)	25-Jun	7-May	21-Jun	26-Jul
Ht	Glenn	14-Apr	16	35 (5.4)	26-Jun	27-May	3-Jul	1-Aug
Vg	Glenn	10-Apr	15	13.3 (2.6)	26-Jun	27-May	3-Jul	1-Aug

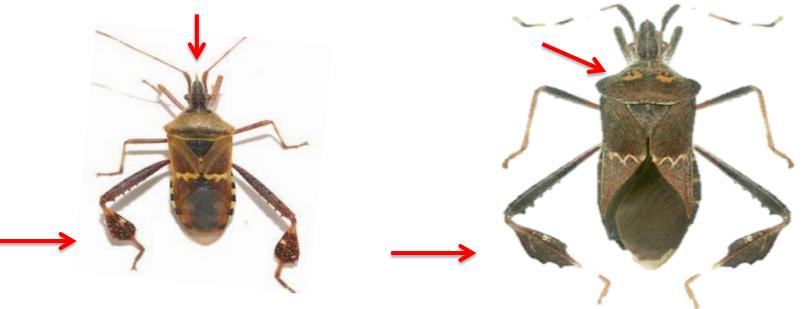
Thank you

Andrea Joyce, University of California, Merced

Leaffooted Plant Bugs: Field-cage Study to Assess Damage

Andrea Joyce, University of California Merced Research Updates, Dec. 10, 2015 Almond Conference

Introduction



Leaffooted Plant Bugs

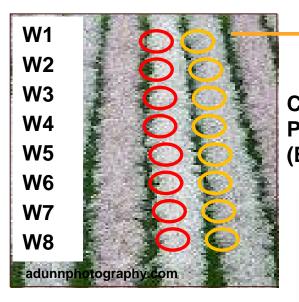
L. clypealis

L. zonatus

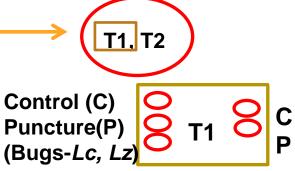
Objectives:

- Establish a colony of Leaffooted bugs for field and lab work
- Examine species of leaffooted bugs and stinkbugs on almonds, pistachios, and pomegranates
- Conduct a field-cage study with two LFPB species feeding on almonds to determine when almonds are most susceptible to feeding damage

Field-cage Study of LFPB Feeding Damage

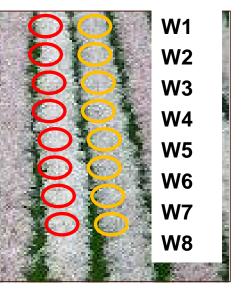

<u>Part 1:</u> Assess almond drop and damage by feeding Leaffooted bugs during the growing season as almonds develop

Part 2: Conduct a final assessment of almond kernel damage at harvest



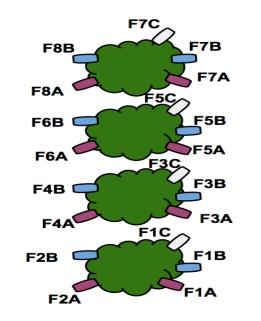
Research Sites Overview

Merced



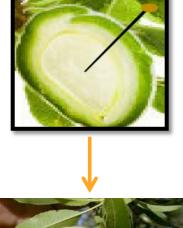
Monterey, Carmel

Winton


Nonpareil, Fritz

Field Cage Set Up

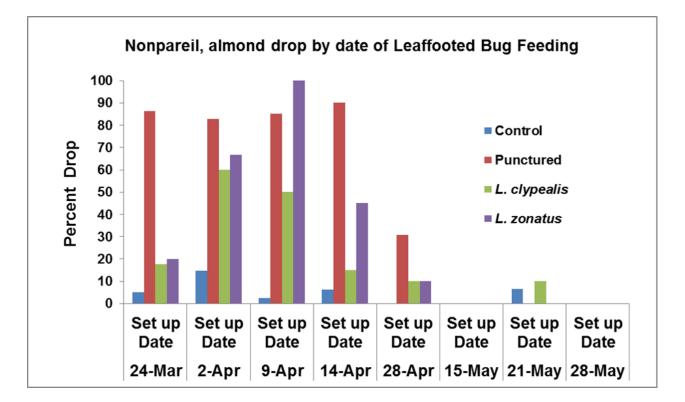
S

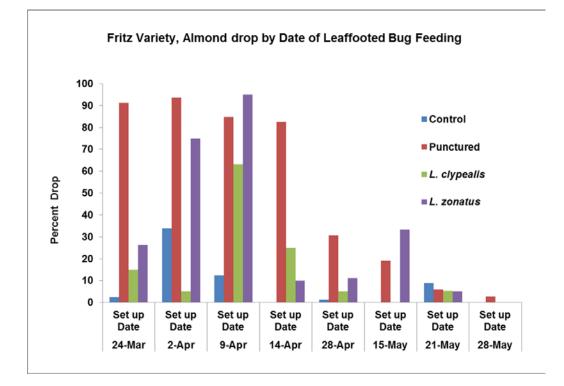


Ν

Punctured (B) Bug Fed (C)

Controls (A)





Results: Date in Orchard & Almond Drop-Nonpareil

Results: Date in Orchard & Almond Drop-Fritz

Conclusions

1) 2014-2015, *L. zonatus* was the dominant LFPB observed in almonds

2) Late March through mid-April, almonds were most susceptible to drop from LFPBs

3) Most almonds drop 2 weeks after bug feeding occurs

4) Both almond drop and damage at harvest are higher from *Leptoglossus zonatus*

5) LFPBs were seen at almond harvest and pistachio harvest

6) Aggregation behavior in *L. zonatus* might be used for monitoring or trapping

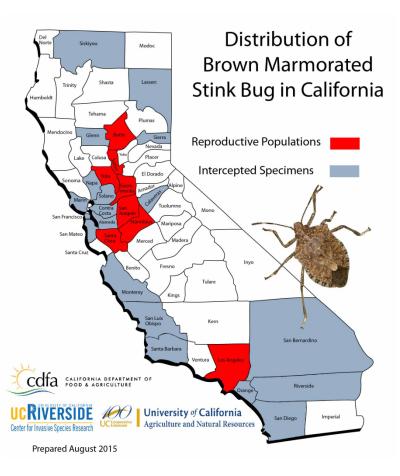
Data will contribute to an IPM program for these insects

Acknowledgements

Almond Board of California

UCCE Collaborators: Roger Duncan, David Doll, David Haviland, Kris Tollerup, Joe Connell; Wonderful Orchards-Brad Higbee; Clendenin and Arnold Families, Merced County; Mel Machado, Blue Diamond; Steve Boone, Wilbur-Ellis; Matt Thompson, Tracy Miller, Mid-Valley Agricultural Services; Brad Robson, Buchanan Hollow Nut Co., Le Grand; Juan Holguin, Monarch Bio Systems; Cal-Poly SLO students-Kylie McMillan, Lindsay Robson. UC Merced Student Assistants Etienne Melese, Amanda Khoo, Maria Martinez, Rebecca Quinte; Ashley Valley, Andrew Loera, Karen Cedano, Eunis Hernandez, Ryan Torres. Many more!

Dani Lightle, UCCE Glenn County


Measuring Penetration Potential of Brown Marmorated Stink Bug

Dani Lightle, UC Farm Advisor, Glenn Butte & Tehama Counties

BMSB in California

- Arrived in 2012 and found in Sacramento.
- Has moved up and down I-5 corridor.
- Probably around your hotel! Take a look.

Stinkbug damage in almonds

- Gumming
- Kernel damage
- Dropped nuts
- Other?

Objective

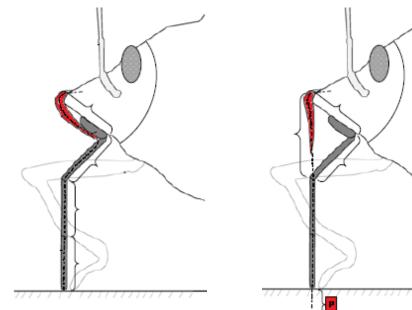
• Identify critical periods in almond development for kernel damage by BMSB

Methods

- 174 bugs from CDFA colony
- Measured stylet length using a microscope camera
- Calculate 'penetration potential'

2nd instar

4th instar



adult male

Measuring penetration potential

Stage	Penetration potential
Adult Male	2.39 ± 0.017 mm
Adult Female	2.67 ± 0.018 mm

To be continued...

• Measurements of developing nuts will be taken in 2016

