

Pest Management: Fine-tuning Spray Efficacy

December 8, 2016

Pest Management: Fine-tuning Spray Efficacy

Ali Pourreza, University of California (Moderator)

Brad Higbee, Wonderful Orchards

Joel Siegel, USDA-ARS, Parlier

Matt Strmiska, Adaptiv

Survey

Almond Spray Application

Almond Conference, Sacramento CA December 6-8, 2016

goo.gl/bghXzy

10 Questions - 3 Minutes

Alireza Pourreza

CE Advisor
Agricultural Engineer Kearney
Agricultural Research &
Extension Center

Franz Niederholzer

Farm Advisor
Orchard Systems
Cooperative Extension
Sutter-Yuba Counties

University of California

Agriculture and Natural Resources

1. \	What is your main relationship to agriculture industry?
0	Grower
0	PCA or CCA
0	Supplier (fertilizer, pesticides, seed, machinery, etc.)
0	Regulation/policy
0	Scientist/researcher
0	Other:

2. What is your age?

- 24 or younger
 - 25 34
 - 35 44
- 45 54
- 55 64
- 65 74
- 75 years or older

3. Who do you contact most often to obtain spray technology/application information?

- University academics (Advisors, Specialists, Faculties)
- O PCAs or other industry reps
- Other growers
- Family
- Not Applicable

4. Which of the following concepts are familiar for you? (Select all that apply)
Precision Agriculture
Variable rate technology/application
Prescription map
☐ Yield map
GPS (Global Positioning System)
GIS (Geographic Information Systems)
Remote Sensing

5. What kind of sprayer equipment do you own/use? (Select all that apply)

Photo: J. Cook

Tower attachment

Other:

6. Rank the following issues in almond spray application based on their priorities and importance?

	Slightly important	Medium important	Very important
Coverage			0
Efficacy	0	0	0
Calibration			
Drift	0	0	0
Penetration			

7. What practice have you conducted to improve spray coverage, and how it worked?

	Coverage improved	Coverage did not change	Coverage declined
Slower speed			
Higher air pressure	0	0	0
Smaller droplet size			
Use of tower sprayer	0	0	0

8. Is	the status	quo in s	pray application	sustainable?
-------	------------	----------	------------------	--------------

O Yes

O No

O I am not sure

9. On a scale of 1 to 5, how satisfied are you with your current spray application?

Most satisfied

1 2 3 4 5

Least satisfied \(\cappa \)

10. What is your preferred way of receiving information from
UCCE?

Personal Contact
Printed Material
Electronic form (Email, e-newsletter, blog, website)
Smartphone application
Educational Video
Online training tool
Field day and workshop
Podcast

Optional

Email

Your answer

First name

Your answer

Last name

Your answer

SUBMIT

Thank you very much for your time!

Navel Orangeworm Control in Almonds – the Challenge of Delivering Residues to the Target Site

NOW Control in Almonds

- Past heavy reliance on Ops, then pyrethroids
- Current pyrethroids less effective
- Diamides, IGRs, MD
 - Primarily ovi-larvicides
 - Target site for residues is the almond hull/nut
 - Suspected problems
 - Canopy density
 - Spatiotemporal dynamics of hull splitting (=susceptibility)

Currently Available Als in Almonds

Active Ingredient	IRAC Number	<u>MOA</u>
Bifenthrin	3	Sodium channel modulators
Lambda-cyhalothrin	3A	Sodium channel modulators
Chlorantraniliprole	28	ryanodine receptor modulators
Flubendiamide	28	ryanodine receptor modulators
Methoxyfenozide	18	ecdysone receptor agonists
Spinetoram	6	chloride channel activators
Emamectin benzoate	5	nicotinic acetylcholine receptor agonists

Spray Coverage in Almonds 2010-2016

• Objectives:

- Characterize and quantify spray coverage at various elevations and positions within the tree canopy.
- Test and compare ground speeds, spray volumes, nozzling, adjuvant type and concentration, airspeed, and machine type (engine drive, PTO, tower, etc) in an effort to improve performance of the residual insecticides used in this test against NOW.
- The standard used to compare against each year is the Air-O-Fan (AOF) engine drive (D2-40) at 2 mph delivering about 200 gals/acre.

Application Variables

Residue Placement on the nut

Tree height

Redistribution (or not)

Sprayer Speed

Shadowing

Hull Split %

Sprayer type

PHI

Hull Split by Variety

Electrostatics

Spray Coverage

Tower

Adjuvant Rate

Fan Air Speed

Spray Timing

Adjuvant type

Tree Density

Spray Mixture

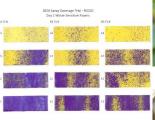
Droplet Size

Temperature

Gallons/Acre

Spray Pressure

Number of Sprays



Evaluation

Analysis of spray coverage included 3 measures

- Water sensitive papers (% coverage)
- Product residue on nuts (micrograms/nut)
- Efficacy (% infestation or damage)

Each year, 1,500 – 2,000 individual nuts analyzed for product residues, 200-400 WSPs scanned, and 150,000+ nuts dissected for infestation and damage.

- 1. Water sensitive paper is great for a qualitative assessment
- 2. Residue analysis on nuts quantifies product placement
- 3. Efficacy is where the rubber meets the road, but you need the first 2 to understand how to get there

Spray Coverage comes in many varieties

 For NOW and the products tested, residues must be deposited on the hull/nut

Machines Tested 2010-2014

Air-O-Fan D-240 200 gals/ac @ 2 and 2.5 mph

Progressive Ag 2650

Progressive Ag 3 head 2650 w/ 16 ft tower

Progressive Ag Tower 150 gals/ac @ 3 mph

Bell 206 30 gals/ac @ 30 mph

Blueline Accutech 10 head tower

Rears PTO 38" Fan

Air-O-Fan 232 PTO 1000 gal tank Hollow cone

Machines Tested 2015

Curtec AC 1000 TRX cone jet nozzles

Progressive Ag Tower

Air-O-Fan D-240 Disc and core hollow cone

Air-O-Fan D-240 TRX cone jet nozzles Maximal configuration

Machines Tested 2016

Rears PTO 38" Fan

ZeferSpray PTO TRX cone jet Nozzles – 4/fan

Progressive Ag Tower - PTO

Air-O-Fan D-240 Disc and core hollow cone

Air-O-Fan D-240 TRX cone jet nozzles Minimal configuration

Air-O-Fan 232 PTO 1000 gal tank

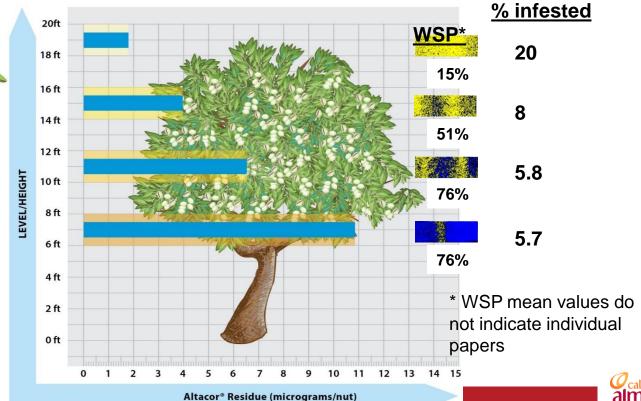
Nelson-Hardie PTO 34" twin fans

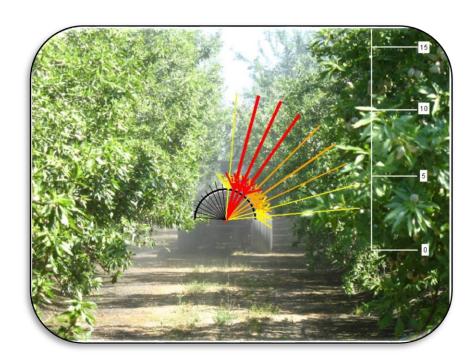
Experimental Variables Targeted – 4 Seasons

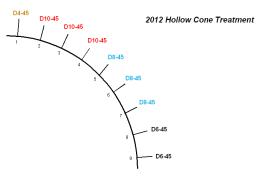
Variable	2010	2011	2012	2013
Spray Volume (GPA)	50, 200	50, 200	150, 200	30, 150, 200, 400
Sprayer Type (AirBlast, Tower, Helicopter)	Air-O-Fan, Electro, Towers	Air-O-Fan, Electro Tower	Air-O-Fan, Electro Tower	Air-O-Fan, Electro Tower, Helicopter
Sprayer Speed (mph)	1.5 – 4	2 – 4	2 - 3	2 – 3 (30 H)
Spray Nozzle Type	Disc/Core, Air Shear	Disc/Core, Air Shear	Disc/Core, Full Cone, Flat Fan, Air Shear	Disc/Core, Air Shear
Nozzle Configuration	Varied	5 configs of Disc/Core	Varied	Varied
Adjuvant	LI-700@0.125%	LI-700@0.25%	Dyne- Amic@0.5%	Non- Ionic@.125%
Spray Timing	Single Spray @ 1 - 5%	Single Spray @ 1 - 5% HS	2 Sprays (1 mo apart) 2%/50%	2 Sprays (1 mo apart) 1%/60%
Vertical Spray Proportion				✓
Multiple Applications			✓	✓

Summary 2010 – 2014 Trials

- First 4 years of testing showed that spray coverage in the upper ½ to 1/3 of trees was limited
 - Towers helped improve upper tree coverage significantly, but lower canopy coverage was not as good as the standard AOF.
 - NOW Infestation levels highest (3-4x) in upper half of canopy
- Application Variables such as nozzle type, adjuvant, droplet size did not have significant impacts on efficacy
 - Small positives with full-cone nozzles, using dual spray booms with small hollow cones,
 DyneAmic adjuvant (2012), electrostatic at 3 mph
- Number of Applications an important factor
 - 2012 -13 had a solid increase in performance with 2nd spray
 - Residues were relatively stable and are additive
- Damage reductions typically 15-25% with a single application in initial trials vs.
 - 55-60% with two applications in subsequent tests.

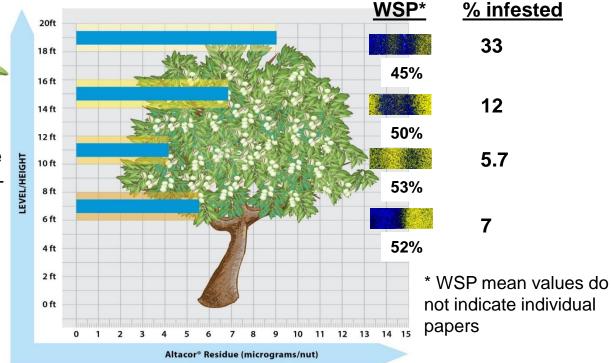


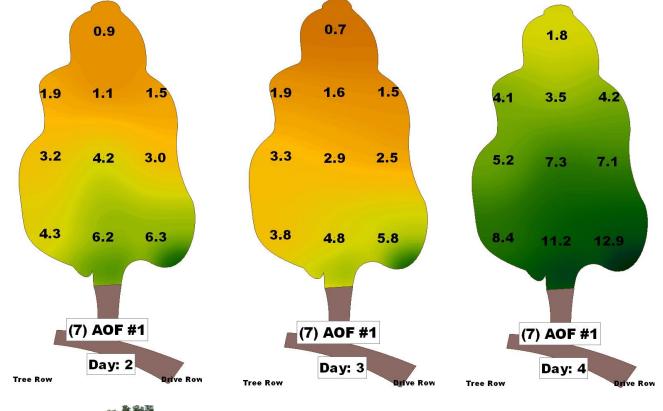

Air-O-Fan Spray Coverage (2 sprays)


- Extremely rugged design
- 100 mph, Hi
 Volume air
- Nozzle flexibility a plus
 - o Multi-Boom

Challenging Coverage Due To Shadowing, Angle

- Lower branches/leaves block spray targeting upper level
- Too many nozzles targeting lower level – restrictive radius
- Proportional nozzle sizing? largest in red (Did not help)
- Begs for a short tower

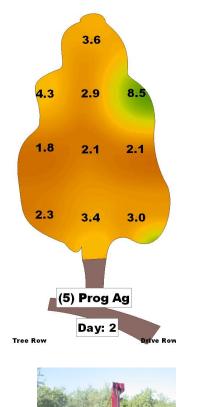


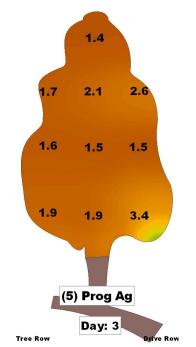


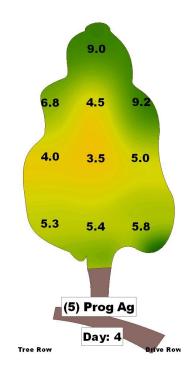
- Multi-head Towers –
 Very Good Coverage
- 10,000 Volt Charge small droplets
- High Velocity Air (200 mph)
- Higher Speed: 3-4 mph
- Air shear

2013 Trial

B. Higbee, Wonderful Orchards


>2-3 >3-4


>4-5 >5-6


>6-7

>9-10 >10-11

>11-12

B. Higbee, Wonderful Orchards

0 - 1

>2-3 >3-4

>4-5

>5-6 >6-7 >7-8 >8-9 >9-10 >10-11

>11-12

100% Coverage by Dipping Nuts

NP dipped at each spray timing (3x) Mo only dipped at final spray timing (1x)

Each nut numbered

Mix spray solution

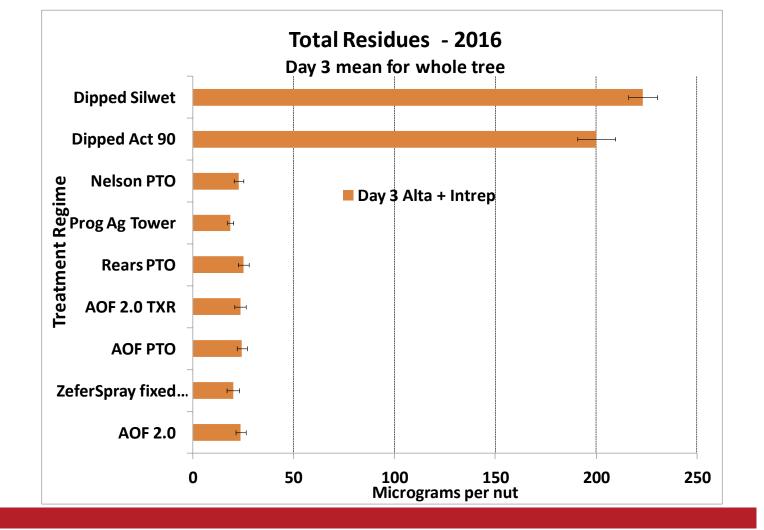
Determine maturity status

Dip nut for 5 secs

B. Higbee, Wonderful Orchards

2015 Nut Dipping - NP

- At each of the 3 spray application timings, 300 NP nuts were dipped for 5 secs in the spray tank solution.
- Interior trees, 5-6' from ground.
- % NP split:


 June 19 = 0%
 July 17 = 66%
 July 24 = 94%

 Aug 17 % NOW NP

 Damage = 26%
 vs 2% = 92.3% reduction
- Many dead neonates on treated nuts (96.4% vs 7.4% of larvae were dead)
- Therefore: Under heavy pressure, the best this 3 spray program can achieve is 2% damage, or a reduction of 92%!

B. Higbee, Wonderful Orchards

B. Higbee, Wonderful Orchards.

Spray Coverage

- Under the conditions of the 2015 trial (≈ 30% infestation, 3 sprays)
 max potential is 92% damage reduction
- The standard ground application @ 2 mph (AOF) remains the among the best. But, above 12 ft there is a severe dropoff in coverage and residue deposition.
- PTO based machines look as effective as engine drive
- Large arrays of XTR (AKA Cone-jet) nozzles did not provide any significant advantage at 2 mph, but may have potential at higher speeds (4 mph in this trial)
- The Progressive Ag tower is a top performer, but not sig better than the standard AOF application

B. Higbee, Wonderful Orchards.

Spray Coverage (cont)

- Residues from serial applications are additive and relatively stable
- Helicopter applications in combination with ground applications did increase residues in the upper canopy, but did not result in greater damage reduction relative to the standard AOF application.
- The addition of a 3rd spray increased damage reduction up to 80%
- Hulls splitting after application are likely an impediment to 100% control

B. Higbee, Wonderful Orchards.

Keep your equipment well maintained and calibrated properly

Acknowledgements

Dupont Crop Protection – Ray Kazmarcyck Wonderful Orchards WO Entomology Research Group

> Ashlee Pedro Gabrielle Chrisco

Fernando Higuera

Kyle Lemucchi

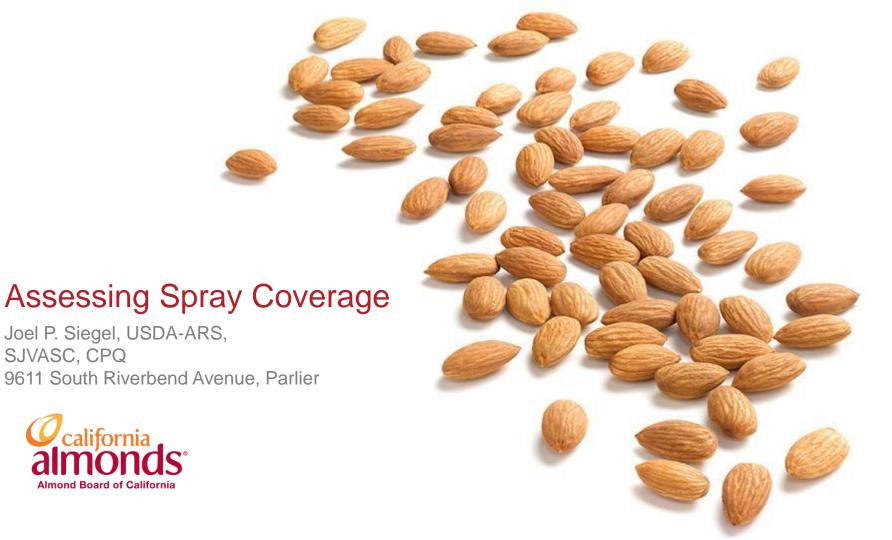
Eddie Placentia

Vince Phillips

Emmanuel Higuera

Wonderful

orchards™



Joel Siegel, USDA-ARS, Parlier

SJVASC, CPQ

Thanks to DuPont for sponsoring this research, also Dow AgroSciences, Almond Board of California, Pistachio Research Board Work done in collaboration with Matt Strmiska, Adaptiv

Pretend that the dose needed for control is 10 units Chemical has a half life of 7 days You want **28** days of control You need to deposit at least 4 half lives of material, or 160 units

Go for the most challenging zone: the suture

Hull vs Suture

How critical is the suture?

Survival, Suture vs Hull:

1.24X greater in suture

With insecticide:

 $T_0 = NO$ Difference

T₁₄=1.8X increase in survival,

P< 0.0001

46,610 eggs, 4,661 almonds

How much reaches target?

Vertical Component



california almonds

Other ways to measure? My contribution

Addition of Biological Targets

52

Aerial Bifenthrin + Cypermethrin (Mustang) Sept 11, 12.5 oz/ac total, 20 gpa Contact Mortality GOOD

Height	Mortality	Eggs
6	57.2%	1,150
10	66.5%	400
12	68.3%	400
14	82.0%	400
16	84.0%	400
18	87.0%	4600
Overall	70.1%	7.350

Ultimate Combination

Frank Zalom, UC Davis

How much reaches target?

Pretend that an Acre is a Flat Carpet

```
4,046,856,000 mm<sup>2</sup> (= 1 acre)
```

Start with Altacor at 4.5 oz/ac:

- = 44,650,515,000 nanograms applied
- = 11.033 nanograms/mm²

11

Whole Nut: 1,596.4 nanograms at 15 feet;

1.11 nanograms per mm²

Loss is 89.97%

Intact Shell: 202.1 nanograms per nut

Loss is 87.3% compared to whole nut

Using 1,441.9 mm² as area of hull

Total loss compared to tank:

98.78% or only 1.22% reaches suture

Filter Paper Theory:

11.03 nanograms mm²

Recovery: 0.997 nanograms mm²

Loss is 90.97%

Filter Paper in Suture:

0.33 nanograms per mm²

Loss is 67.3% compared to filter paper outside

Total loss compared to tank:

97.05% or **2.95%** reaches suture

LOSS IS 97.1 98.8%

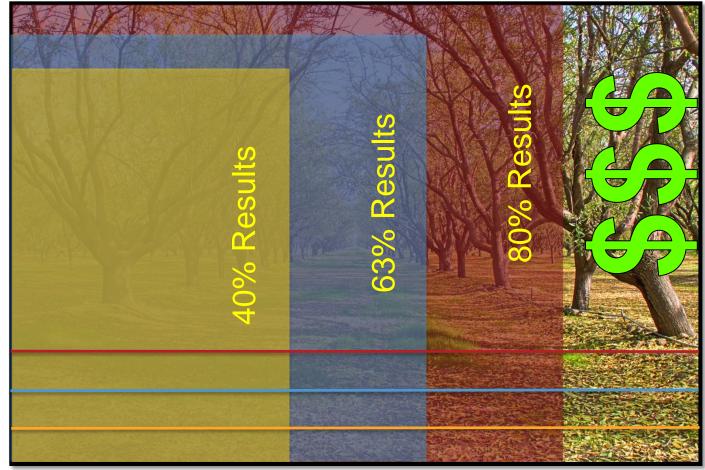


Only 1.2 – 3 % of applied material reaches suture!!!

The 80/20 Rule of Spraying

How To Get More From What You Own

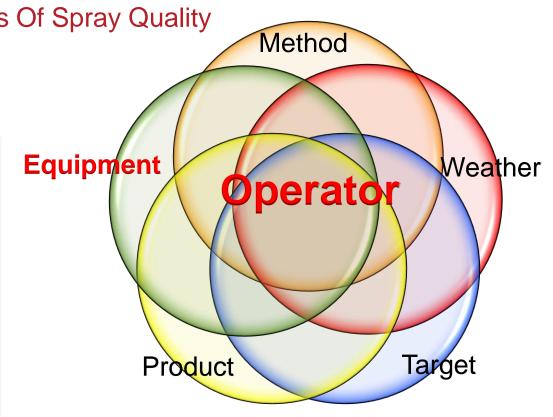
Matt Strmiska Adaptiv



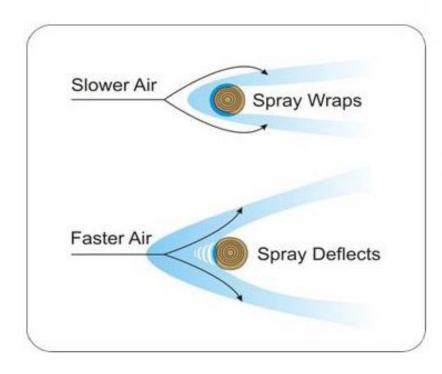
Pareto Principle

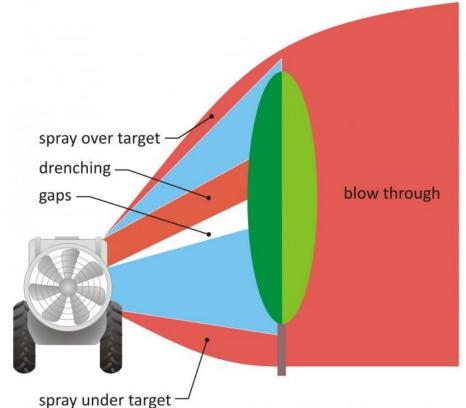
It is easy to get started and see immediate results, but investing 4x the effort will double your results.

> 20% Effort 10% Effort 5% Effort



Effort In Understanding Factors Of Spray Quality Catalog 51 Leaders in precision application components, control system technology, and application data


management.

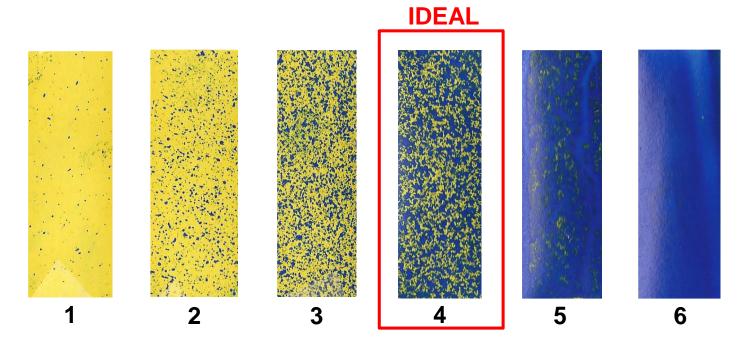


Thinking About Air

Applying Air with Effort

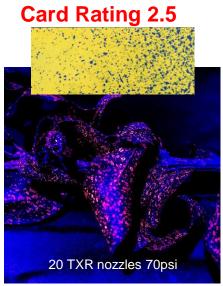
If you're assuming what you want is happening, then your assumption is incorrect.

The air must adequately reach your target.

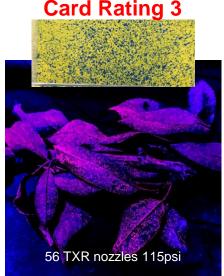

Waste as little air as possible when reaching your target.

Effort To Know Coverage

These cards represent a range of results and are correlated (P = .0003) with percent kill of Naval Orangeworm in contact toxicity bioassays.



Effort With Machine Selection

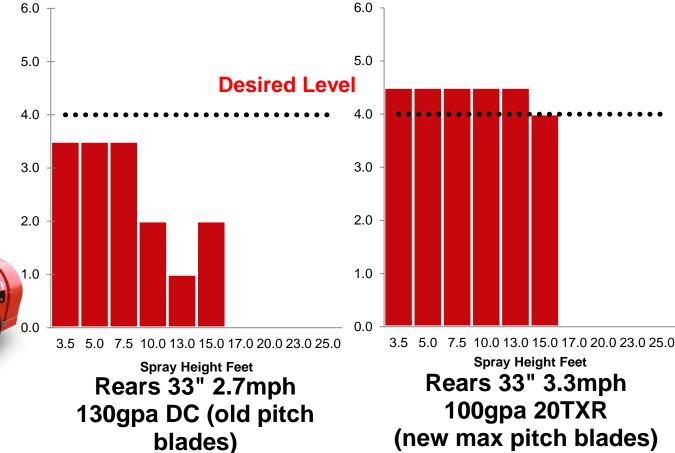

Samples taken at 13 feet 1 to 2 mph winds Minimal prune : 20' tall almonds

Card Rating 1 10 volts measured 6 inches from tip

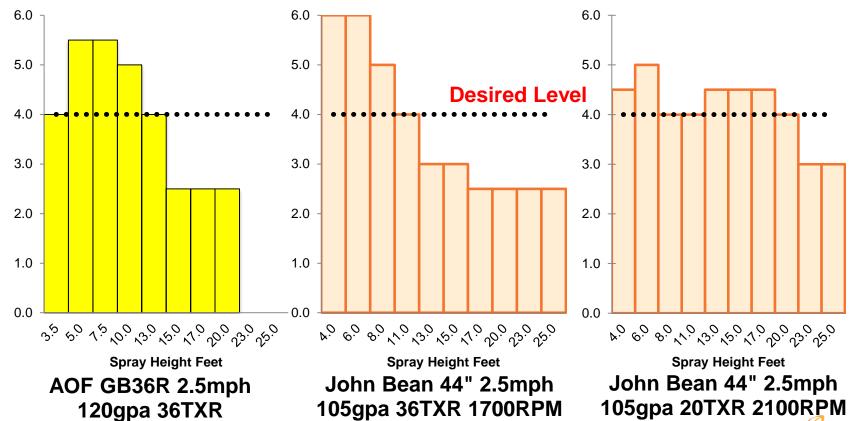
PTO LectroBlast 36" 4mph - 50gpa

PTO Rears 33" 2.7mph - 100gpa

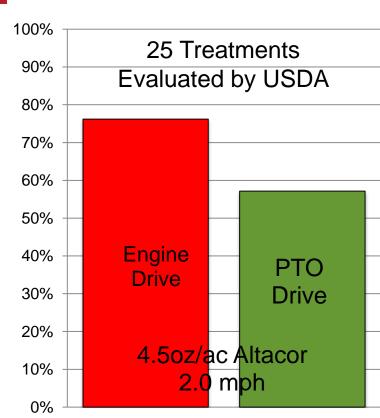
PTO Air-o-Fan 2/32" 2.7mph - 100gpa

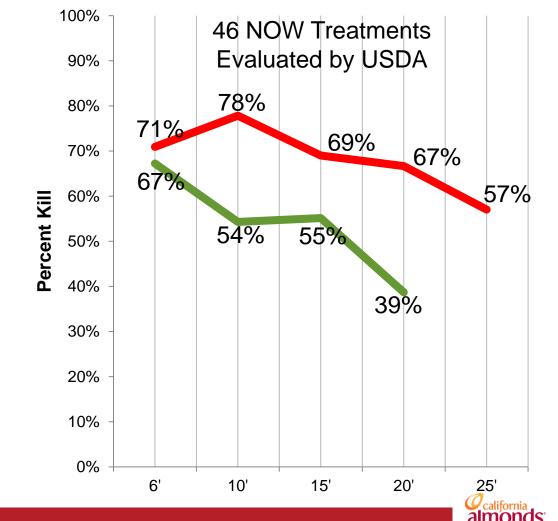


Engine Air-o-Fan D40R 2.7mph - 100gpa


№ ADAPTIV

Effort With What You Own




Effort With What You Own

A ADAPTIV

2014 Summary

