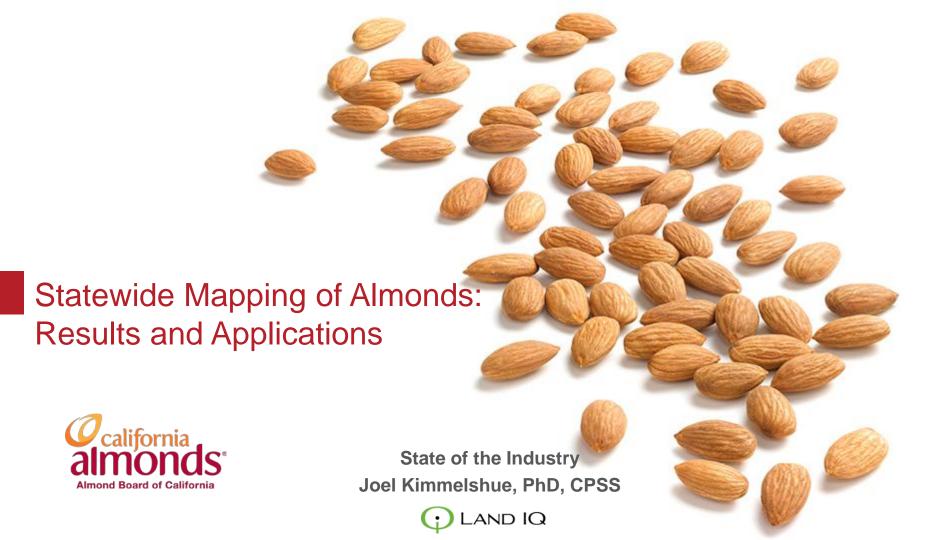
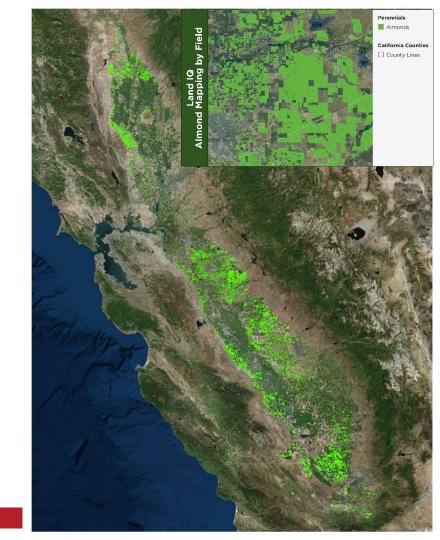


HOW WOULD YOU DESCRIBE THE STATE OF THE INDUSTRY?

State of the Industry

- Richard Waycott, Almond Board of California (Moderator)
- Karen Ross, Secretary, California
 Department of Food and Agriculture
- Joel Kimmelshue, Land IQ
- Mike Mason, Supreme Almonds of California
- Chris Messer, USDA NASS

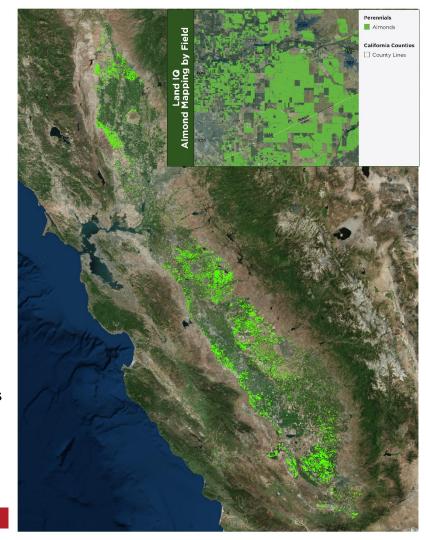


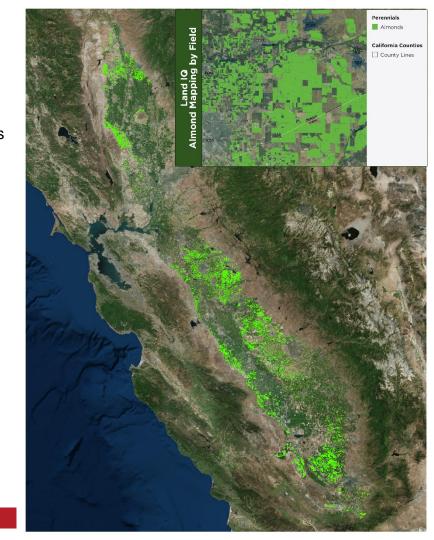


Presentation Summary

- Cooperators, Resources, and Development Timeline
- Acreage Results
- Applications
 - Age Analysis
 - Recharge Potential
- On-Line Web Map
- Conclusions

Cooperators, Resources, and Development Timeline



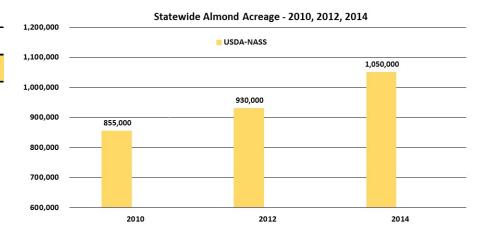

Cooperators and Resources

- Primary Cooperators
 - Almond Board of California (ABC)
 - Land IQ, LLC
- Main Resources
 - United States Department of Agriculture (USDA) National Agricultural Imaging Program (NAIP) imagery
 - Landsat and other imagery
 - California Department of Water Resources (DWR) County Crop Mapping
 - USDA-National Agricultural Statistics Service (NASS)
 CropScape Mapping
 - USDA-NASS Tabular Records
 - California Department of Pesticide Regulation (DPR) Records
 - County Agricultural Commissioner Crop Reports
 - Grower Knowledge
 - Agronomic and Remote Sensing Expertise

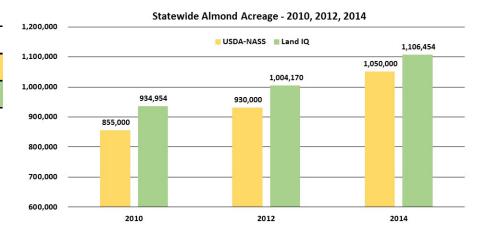
Development Timeline

- Over Half a Decade of Research and Development
 - Idea Development in 2010 and before Were average yields slightly elevated?
 - Initial Pilot Study in Madera County in 2011
 - Secondary Pilot Study in Madera County in 2013
 - Statewide almond mapping in 2014 including other crops
 - Retrospective 2010 and 2012 mapping
 - Current analyses derived from most up-to-date mapping
 - Age Analysis
 - Recharge Potential
 - Future analyses
 - Previous Crop Analysis
 - Regulatory Compliance and Risk
 - Renewable Energy Analysis
 - Water Supply Reliability
 - 2016 mapping complete at the end of 1st quarter of 2017
 - · Waiting on imagery to become available

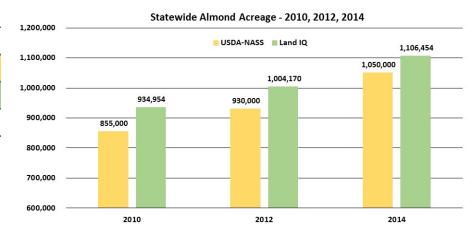
Acreage Results



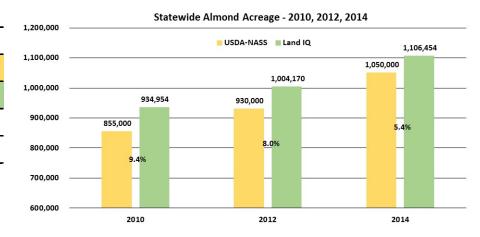
• USDA-NASS Acreage


	2010	2012	2014
USDA-NA	ASS 855,000	930,000	1,050,000

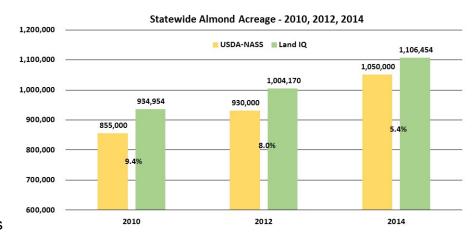
• USDA-NASS and Land IQ Acreage


	2010	2012	2014
USDA-NASS	855,000	930,000	1,050,000
Land IQ	934,954	1,004,170	1,106,454

• USDA-NASS and Land IQ Acreage Comparisons


	2010	2012	2014
USDA-NASS	855,000	930,000	1,050,000
Land IQ	934,954	1,004,170	1,106,454
Difference	79,954	74,170	56,454

• USDA-NASS and Land IQ Acreage Comparisons


	2010	2012	2014
USDA-NASS	855,000	930,000	1,050,000
Land IQ	934,954	1,004,170	1,106,454
Difference	79,954	74,170	56,454
% Difference	9.4%	8.0%	5.4%

USDA-NASS and Land IQ Acreage Comparisons and Conclusions

	2010	2012	2014
USDA-NASS	855,000	930,000	1,050,000
Land IQ	934,954	1,004,170	1,106,454
Difference	79,954	74,170	56,454
% Difference	9.4%	8.0%	5.4%

- Key Conclusions
 - Differences are decreasing and have existed for years
 - These acreage differences do not impact volume of production
 - Land IQ has begun a partnership with USDA-NASS to maximize accuracy
 - USDA-NASS will continue to provide official statistics as well as items Land IQ does not provide:
 - Subjective and objective yield estimates
 - Varietal distribution
 - Nursery survey results

Acreage Results – Bearing Only

• USDA-NASS and Land IQ Bearing Acreage Comparisons

	2010	2012	2014
USDA-NASS	770,000	820,000	880,000
Land IQ	810,386	885,575	936,263
Difference	40,386	65,575	56,263
% Difference	5.2%	8.0%	6.4%

Average Yield Results (lbs/acre)

Land IQ and USDA-NASS Average Yield Comparisons and Conclusions

	2010	2012	2014
Crop Volume (lbs)	1,640,000,000	1,890,000,000	1,870,000,000
USDA-NASS	2,130	2,310	2,130
Land IQ	2,024	2,134	1,997
Difference	106	176	133
% Difference	5.2%	8.0%	6.4%

- The ABC and grower suspicions were verified average reported yields/acre were slightly higher than experienced
- Although average yields/acre were actually lower, this was a result of higher acreage, not additional volume of crop

Applications – Age Analysis

Applications – Age Analysis

 Question: Can you also determine the age of each orchard?

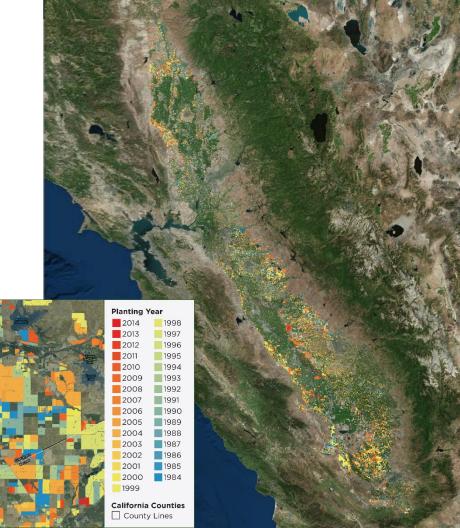
Answer: Yes

Once orchards are mapped, only then can age be determined

A backwards looking approach (through 1984) at various imagery sources is conducted

Once "signature" appears as open ground, then this

establishes planting date


- +/- 1-2 years

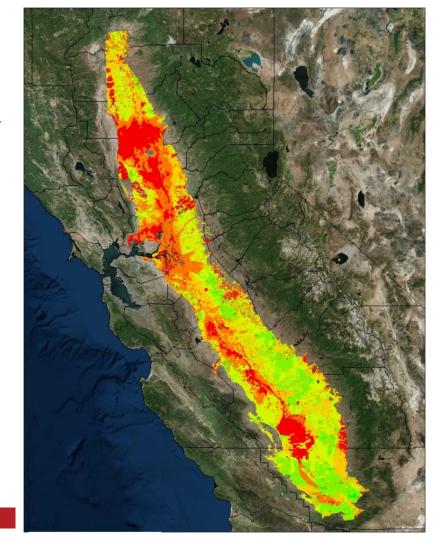
Accuracy = 90-95%

• Significance: Potential Uses

Yield forecasts/enhancements

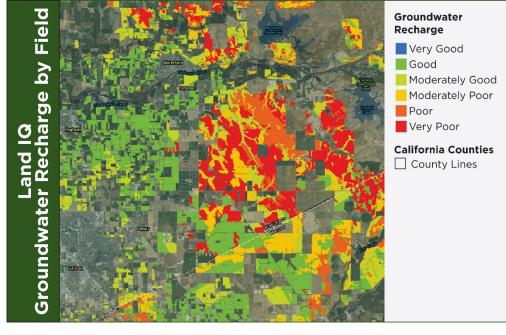
Biomass/carbon accumulation

Applications – Groundwater Recharge Potential



Application – Groundwater Recharge Potential

- Question: Given increased interest in winter recharge by ABC and state regulations, can you tell which orchards are most suitable for intentional recharge?
- Answer: Yes
 - Developed a Central Valley wide suitability index utilizing:
 - University California Davis (UCD) Soil Agricultural Groundwater Banking Index (SAGBI)
 - California Department of Water Resources (DWR)
 Groundwater Levels
 - United States Geological Survey (USGS) Central Valley Hydrologic Model (CVHM) well logs
 - California Department of Water Resources (DWR) Irrigation District Coverage
 - Hydrology & Points of Diversion
 - The index provides a locating tool for determination of suitable areas for intentional groundwater recharge in any crop



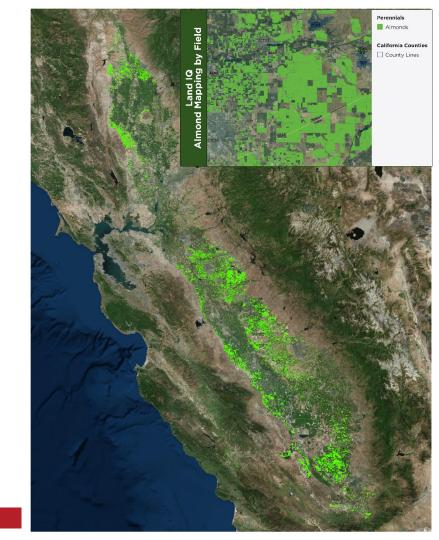
Application – Recharge Potential

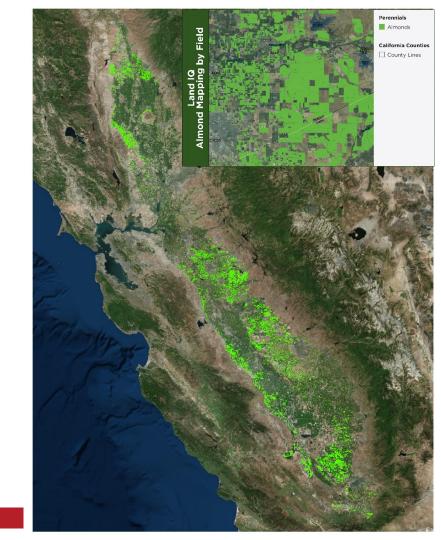
- Overlay almond orchard mapping on top of recharge suitability index
- Inherit the recharge classification to the specific almond orchard itself
- Result is a new map product that shows recharge classification specifically for almond orchards

• Significance:

- Resulted in approximately 600,000 acres of suitable almond orchards
- Allows growers and water providers the ability to locate most suitable orchards in relation to water supply infrastructure
- Prioritizes land for recharge opportunities
- Does not replace site-specific investigations
- Allows for interaction with other researchers for assessing impact on crop, soils, leaching, etc.

Web Map Application




Web Map Application

- These research results (mapping and applications) are now available to all interested growers, processors, industry members, and the public
- Method of dissemination of these research results is a web based mapping tool.
- The tool can be accessed at the ABC web site at <u>www.almonds.com/maps</u>
- Web map considerations:
 - View only
 - No modifications to underlying information possible
 - Protects integrity, management, and updates of the base layer data
 - No identifying information is contained within this web site or map

On-Line Web Map Site

- For public use
- It's a "living" map and will continually be updated over time as new analysis results become available (e.g. 2016 mapping).
- Web map components:
 - Various map backgrounds
 - 2010, 2012, 2014 almond mapping layers
 - Age Analysis by orchard
 - Recharge Suitability by orchard
- Technical support at: <u>technical.support@landiq.com</u> and 916.265.6358

Web Map Demonstration

Conclusions

Conclusions

- Almond Board of California proactively commissioned a map-based (spatial) format to better understand statewide acreage and agricultural issues
- The mapping that has been completed for 2010, 2012, and 2014 is greater than 96% accurate as to orchard location and acreage
- 2016 mapping will be completed at the end the first quarter of 2017 once USDA NAIP imagery becomes available
- There are multiple uses of the base layer information for analysis purposes, including age determination, intentional almond recharge potential, regulatory compliance, renewable energy analysis, water supply reliability, crop forecasting
- A public use web map has been developed that allows for viewing of almond mapping for various years and analysis results www.almonds.com/maps
- Technical support for the web map can be reached at technical.support@landiq.com or 916.265.6358

Acknowledgements

- Almond Board of California
- Land IQ
 - Mica Heilmann, CPSS
 - Zhongwu Wang, PhD
 - Seth Mulder, MS, CPAg, CCA
 - Chris Stall, MS
 - Matt Twietmeyer, MS
 - Stephanie Tillman, MS, CPAg
 - Ruth Spell, MS
 - Nolan Schultz
 - Kyleigh Turnquist
 - Andrew Loberg

USDA's National Agricultural Statistics Service

The Almond Conference December 6-8, 2016 Sacramento, CA

Chris Messer

Almonds and NASS program

- Federal Program
- Agreements
- Resources

About NASS

Mission Statement

The National Agricultural Statistics Service provides timely, accurate, and useful statistics in service to U.S. agriculture.

Almonds – Federal Program

Almonds

- Noncitrus Fruits and Nuts June annual
- Crop Production May and July

2017 Guide To Products and Services

Almonds - Agreements

- Almond Acreage Report
- Almond Objective Measurement Survey
- Almond Nursery Survey

Almonds - Resources

- Fruit Acreage Database
- CropScape
- LandIQ data?

Almonds – The 3 Cs

- Collaboration
- Communication
- Cooperation

NASS Thanks You!

- www.nass.usda.gov
 - www.nass.usda.gov/ca

- Email <u>nassrfopcr@nass.usda.gov</u>
- Telephone 800-851-1127

Meet Land IQ and NASS at The Almond Board Booth

Tuesday, December 6:

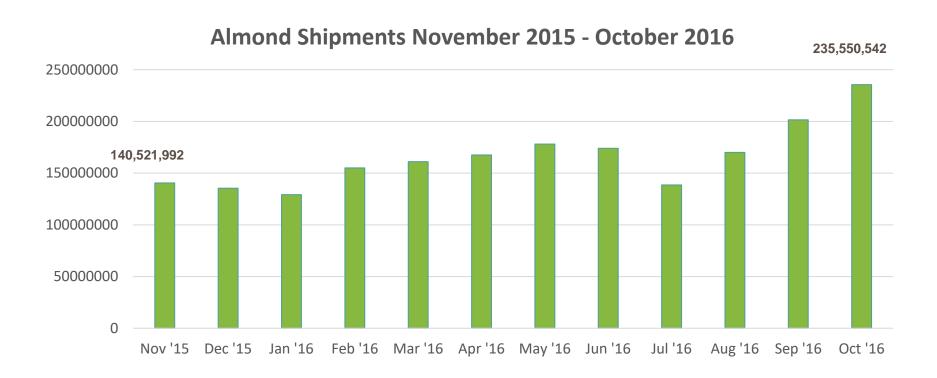
• 5:30 - 7:00 pm – Joel Kimmelshue and Chris Messer

Wednesday, December 7:

- 9:30 10:15 am Mica Heilmann
- 1:15 2:15 pm Joel Kimmelshue
- 3:30 5:30 pm Joel Kimmelshue or Mica Heilmann

Thursday, December 8:

• 1:30 - 3:00 pm – Joel Kimmelshue



STATE OF THE INDUSTRY

WHAT A DIFFERENCE A YEAR MAKES

Some of last year's important uncertainties are now more certain

